High-Temperature Skin Softening Materials Overcoming the Trade-Off between Thermal Conductivity and Thermal Contact Resistance

被引:20
|
作者
Kim, Taehun [1 ]
Kim, Seongkyun [1 ]
Kim, Eungchul [1 ]
Kim, Taesung [1 ,2 ]
Cho, Jungwan [1 ]
Song, Changsik [3 ]
Baik, Seunghyun [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
elastic modulus; skin softening materials; thermal conductivity; thermal contact resistance; trade-off; GRAPHITE NANOPLATELET; INTERFACE MATERIALS; CARBON; TRANSPORT; NITRIDE; PERFORMANCE; COMPOSITES; GRAPHENE;
D O I
10.1002/smll.202102128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The trade-off between thermal conductivity (kappa) and thermal contact resistance (R-c) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm(-2)K(-1)) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The kappa (82.8 W m(-1)K(-1)) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m(-1)K(-1)) of the EP core (386 mu m). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing R-c from 108.41 to 78.73 mm(2) K W-1. The thermoplastic skin is further softened at an elevated temperature (100 degrees C), dramatically decreasing E (0.19 GPa) and R-c (0.17 mm(2) K W-1) with little change in kappa, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] High-temperature thermal front in a medium with nonlinear thermal conductivity
    Krishenik, PM
    Shkadinskii, KG
    DOKLADY PHYSICS, 2003, 48 (10) : 559 - 564
  • [22] Ambient and high-temperature thermal conductivity of thermal sprayed coatings
    Chi, W.
    Sampath, S.
    Wang, H.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2006, 15 (04) : 773 - 778
  • [23] High-temperature thermal front in a medium with nonlinear thermal conductivity
    P. M. Krishenik
    K. G. Shkadinskii
    Doklady Physics, 2003, 48 : 559 - 564
  • [24] EFFECTS OF PRESSURE AND TEMPERATURE ON THERMAL CONTACT RESISTANCE BETWEEN DIFFERENT MATERIALS
    Zhao, Zhe
    Huang, Hai-Ming
    Wang, Qing
    Ji, Song
    THERMAL SCIENCE, 2015, 19 (04): : 1369 - 1372
  • [25] Hierarchical modeling and trade-off studies in design of thermal interface materials
    Zhang, X.
    Kanuparthi, S.
    Subbarayan, G.
    Sammakia, B.
    Tonapi, S.
    ADVANCES IN ELECTRONIC PACKAGING 2005, PTS A-C, 2005, : 1479 - 1486
  • [26] A TRANSIENT TECHNIQUE TO DETERMINE THERMAL CONDUCTIVITY AND THERMAL CONTACT RESISTANCE OF POROUS MATERIALS
    De Jaeger, Peter
    T'Joen, Christophe
    Huisseune, Henk
    De Paepe, Michel
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 6: MICROCHANNELS, NANO, NANOFLUIDS, SPRAY COOLING, POROUS MEDIA, 2010, : 911 - 920
  • [27] High-temperature thermal insulating materials
    Suvorov, S.A.
    Skurikhin, V.V.
    Ogneupory i Tekhnicheskaya Keramika, 2002, (12): : 24 - 31
  • [28] High-Temperature Thermal Conductivity of Thulium Orthovanadate
    Kondrat'eva, O. N.
    Nikiforova, G. E.
    Smirnova, M. N.
    Khoroshilov, A., V
    Petrova, K., V
    Gurevich, V. M.
    DOKLADY PHYSICAL CHEMISTRY, 2021, 500 (02) : 101 - 104
  • [29] High-temperature phonon thermal conductivity of nanostructures
    Braginsky, L
    Lukzen, N
    Shklover, V
    Hofmann, H
    PHYSICAL REVIEW B, 2002, 66 (13) : 1 - 9
  • [30] THERMAL-CONDUCTIVITY OF HIGH-TEMPERATURE SUPERCONDUCTORS
    REGUEIRO, MN
    CASTELLO, D
    JAIME, M
    PHYSICA B, 1991, 169 (1-4): : 631 - 632