A Dynamic Penalty Function within MOEA/D for Constrained Multi-objective Optimization Problems

被引:21
|
作者
Maldonado, Hugo Monzon [1 ]
Zapotecas-Martinez, Saul [2 ]
机构
[1] Technopro IT, Roppongi Hills Mori Tower 35F, Tokyo, Japan
[2] DMAS UAM Cuajimalpa, Cdmx 05300, Mexico
关键词
ALGORITHM;
D O I
10.1109/CEC45853.2021.9504940
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For more than a decade, the efficiency and effectiveness of MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition) when solving complicated problems has been shown. Due to this, several researchers have focused their investigations on MOEA/D's extensions that can deal with CMOPs (Constrained Multi-objective Optimization Problems). In this paper, we adhere to the MOEA/D framework, a simple penalty function to deal with CMOPs. The penalty function is dynamically adapted during the search. In this way, the interaction between feasible and infeasible solutions is promoted. As a result, the proposed approach (namely MOEA/D-DPF) extends MOEA/D to handle constraints. The proposed approach performance is evaluated on the well-known CF test problems taken from the CEC'2009 suite. Using convergence and feasibility indicators, we compare the solutions produced by our algorithm against those produced by state-of-the-art MOEAs. Results show that MOEA/D-DPF is highly competitive and, in some cases, it performs better than the MOEAs adopted in our comparative study.
引用
收藏
页码:1470 / 1477
页数:8
相关论文
共 50 条
  • [21] On the effect of normalization in MOEA/D for multi-objective and many-objective optimization
    Ishibuchi, Hisao
    Doi, Ken
    Nojima, Yusuke
    COMPLEX & INTELLIGENT SYSTEMS, 2017, 3 (04) : 279 - 294
  • [22] Fitness Inheritance Assisted MOEA/D-CMAES for Complex Multi-Objective Optimization Problems
    Wang, Ting-Chen
    Ting, Chuan-Kang
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1013 - 1020
  • [23] Dynamic Constrained Boundary Method for Constrained Multi-Objective Optimization
    Wang, Qiuzhen
    Liang, Zhibing
    Zou, Juan
    Yin, Xiangdong
    Liu, Yuan
    Hu, Yaru
    Xia, Yizhang
    MATHEMATICS, 2022, 10 (23)
  • [24] A Bi-objective Hybrid Constrained Optimization (HyCon) Method Using a Multi-Objective and Penalty Function Approach
    Datta, Rituparna
    Deb, Kalyanmoy
    Segev, Aviv
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 317 - 324
  • [25] An Improved MOEA/D Utilizing Variation Angles for Multi-Objective Optimization
    Sato, Hiroyuki
    Miyakawa, Minami
    Takadama, Keiki
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 163 - 164
  • [26] Solving Multi-Objective Portfolio Optimization Problem Based on MOEA/D
    Zhao, Pengxiang
    Gao, Shang
    Yang, Nachuan
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 30 - 37
  • [27] On the effect of localized PBI method in MOEA/D for multi-objective optimization
    Wang, Rui
    Ishibuchi, Hisao
    Zhang, Yan
    Zheng, Xiaokun
    Zhang, Tao
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [28] A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
    Yang, Yufei
    Zhang, Changsheng
    BIOMIMETICS, 2023, 8 (02)
  • [29] Constrained test problems for multi-objective evolutionary optimization
    Deb, K
    Pratap, A
    Meyarivan, T
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 284 - 298
  • [30] An evolutionary algorithm for constrained multi-objective optimization problems
    Min, Hua-Qing
    Zhou, Yu-Ren
    Lu, Yan-Sheng
    Jiang, Jia-zhi
    APSCC: 2006 IEEE ASIA-PACIFIC CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2006, : 667 - +