An Improved MOEA/D Utilizing Variation Angles for Multi-Objective Optimization

被引:1
|
作者
Sato, Hiroyuki [1 ]
Miyakawa, Minami [2 ]
Takadama, Keiki [1 ]
机构
[1] Univ Electrocommun, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Hosei Univ, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan
关键词
Multi-objective optimization; MOEA/D;
D O I
10.1145/3067695.3076037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a decomposition-based multi-objective evolutionary algorithm utilizing variation angles among objective and weight vectors. The proposed algorithm introduces an angle-based proportional selection and dominance- and angle-based solution comparison criterion. Experimental results using WFG4 and WFG5 problems show that the proposed algorithm achieves better search performance than the conventional MOEA/D and MOEA/D-CRU.
引用
收藏
页码:163 / 164
页数:2
相关论文
共 50 条
  • [1] On the effect of reference point in MOEA/D for multi-objective optimization
    Wang, Rui
    Xiong, Jian
    Ishibuchi, Hisao
    Wu, Guohua
    Zhang, Tao
    [J]. APPLIED SOFT COMPUTING, 2017, 58 : 25 - 34
  • [2] A Modification of MOEA/D for Solving Multi-Objective Optimization Problems
    Zheng, Wei
    Tan, Yanyan
    Gao, Meng
    Jia, Wenzhen
    Wang, Qiang
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (02) : 214 - 223
  • [3] On the effect of normalization in MOEA/D for multi-objective and many-objective optimization
    Hisao Ishibuchi
    Ken Doi
    Yusuke Nojima
    [J]. Complex & Intelligent Systems, 2017, 3 : 279 - 294
  • [4] On the effect of normalization in MOEA/D for multi-objective and many-objective optimization
    Ishibuchi, Hisao
    Doi, Ken
    Nojima, Yusuke
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2017, 3 (04) : 279 - 294
  • [5] An improved MOEA/D for multi-objective job shop scheduling problem
    Zhao, Fuqing
    Chen, Zhen
    Wang, Junbiao
    Zhang, Chuck
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2017, 30 (06) : 616 - 640
  • [6] Solving Multi-Objective Portfolio Optimization Problem Based on MOEA/D
    Zhao, Pengxiang
    Gao, Shang
    Yang, Nachuan
    [J]. 2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 30 - 37
  • [7] On the effect of localized PBI method in MOEA/D for multi-objective optimization
    Wang, Rui
    Ishibuchi, Hisao
    Zhang, Yan
    Zheng, Xiaokun
    Zhang, Tao
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [8] MOEA/D with An Improved Multi-Dimensional Mapping Coding Scheme for Constrained Multi-Objective Portfolio Optimization
    Chen, Yi
    Zhou, Aimin
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1742 - 1749
  • [9] An Improved Epsilon Constraint Handling Method Embedded in MOEA/D for Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Li, Hui
    Huang, Han
    Cai, Zhaoquan
    Wei, Caimin
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [10] An improved MOEA/D algorithm for multi-objective multicast routing with network coding
    Xing, Huanlai
    Wang, Zhaoyuan
    Li, Tianrui
    Li, Hui
    Qu, Rong
    [J]. APPLIED SOFT COMPUTING, 2017, 59 : 88 - 103