An Improved MOEA/D Utilizing Variation Angles for Multi-Objective Optimization

被引:1
|
作者
Sato, Hiroyuki [1 ]
Miyakawa, Minami [2 ]
Takadama, Keiki [1 ]
机构
[1] Univ Electrocommun, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Hosei Univ, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan
关键词
Multi-objective optimization; MOEA/D;
D O I
10.1145/3067695.3076037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a decomposition-based multi-objective evolutionary algorithm utilizing variation angles among objective and weight vectors. The proposed algorithm introduces an angle-based proportional selection and dominance- and angle-based solution comparison criterion. Experimental results using WFG4 and WFG5 problems show that the proposed algorithm achieves better search performance than the conventional MOEA/D and MOEA/D-CRU.
引用
收藏
页码:163 / 164
页数:2
相关论文
共 50 条
  • [31] MOEA/D for Multi-objective Hybrid Flowshop Rescheduling Problem
    Zhang, Biao
    Pan, Quan-ke
    Gao, Liang
    Zhao, Yao-bang
    [J]. PROCEEDINGS OF THE ASME 13TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2018, VOL 4, 2018,
  • [32] ICB-MOEA/D: An interactive classification-based multi-objective optimization algorithm
    Xin, Bin
    Li, Hepeng
    Wang, Ling
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2500 - 2505
  • [33] Fitness Inheritance Assisted MOEA/D-CMAES for Complex Multi-Objective Optimization Problems
    Wang, Ting-Chen
    Ting, Chuan-Kang
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1013 - 1020
  • [34] Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D
    Zhang, Mengxuan
    Jiao, Licheng
    Ma, Wenping
    Ma, Jingjing
    Gong, Maoguo
    [J]. APPLIED SOFT COMPUTING, 2016, 48 : 621 - 637
  • [35] Reference Point Specification in MOEA/D for Multi-Objective and Many-Objective Problems
    Ishibuchi, Hisao
    Doi, Ken
    Nojima, Yusuke
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 4015 - 4020
  • [36] MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
    Fan, Zhun
    Fang, Yi
    Li, Wenji
    Cai, Xinye
    Wei, Caimin
    Goodman, Erik
    [J]. APPLIED SOFT COMPUTING, 2019, 74 : 621 - 633
  • [37] MOEA/D Using Covariance Matrix Adaptation Evolution Strategy for Complex Multi-Objective Optimization Problems
    Wang, Ting-Chen
    Liaw, Rung-Tzuo
    Ting, Chuan-Kang
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 983 - 990
  • [38] Universal partially evolved parallelization of MOEA/D for multi-objective optimization on message-passing clusters
    Weiqin Ying
    Yuehong Xie
    Yu Wu
    Bingshen Wu
    Shiyun Chen
    Weipeng He
    [J]. Soft Computing, 2017, 21 : 5399 - 5412
  • [39] Angle-based Constrained Dominance Principle in MOEA/D for Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Hu, Kaiwen
    Lin, Huibiao
    Li, Hui
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 460 - 467
  • [40] An improved MOEA/D design for many-objective optimization problems
    Wei Zheng
    Yanyan Tan
    Lili Meng
    Huaxiang Zhang
    [J]. Applied Intelligence, 2018, 48 : 3839 - 3861