On mean curvature flow with forcing

被引:11
|
作者
Kim, Inwon [1 ]
Kwon, Dohyun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Mean curvature flow; minimizing movements; moving planes method; star-shaped; viscosity solutions; PARABOLIC EQUATIONS; VISCOSITY SOLUTIONS; LEVEL SETS; SURFACES; SINGULARITIES; UNIQUENESS; MOTION; EXISTENCE; HYPERSURFACES; CURVES;
D O I
10.1080/03605302.2019.1695262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates geometric properties and well-posedness of a mean curvature flow with volume-dependent forcing. With the class of forcing which bounds the volume of the evolving set away from zero and infinity, we show that a strong version of star-shapedness is preserved over time. More precisely, it is shown that the flow preserves the rho-reflection property, which corresponds to a quantitative Lipschitz property of the set with respect to the nearest ball. Based on this property we show that the problem is well-posed and its solutions starting with rho-reflection property become instantly smooth. Lastly, for a model problem, we will discuss the flow's exponential convergence to the unique equilibrium in Hausdorff topology. For the analysis, we adopt the approach developed by Feldman-Kim to combine viscosity solutions approach and variational method. The main challenge lies in the lack of comparison principle, which accompanies forcing terms that penalize small volume.
引用
收藏
页码:414 / 455
页数:42
相关论文
共 50 条
  • [21] Spacelike translating solitons of mean curvature flow with forcing term in Lorentzian product spaces
    Batista, Marcio
    Carvalho, Pedro
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [22] MEAN CURVATURE FLOW
    Colding, Tobias Holck
    Minicozzi, William P., II
    Pedersen, Erik Kjaer
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 297 - 333
  • [23] The mean curvature at the first singular time of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1441 - 1459
  • [24] EXISTENCE OF MEAN CURVATURE FLOW SINGULARITIES WITH BOUNDED MEAN CURVATURE
    Stolarski, Maxwell
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (07) : 1235 - 1292
  • [25] Mean curvature flow with pinched curvature integral
    Han, Yongheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2025, 99
  • [26] Singularities of mean curvature flow
    Xin, Yuanlong
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1349 - 1356
  • [27] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [28] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [29] On the extension of the mean curvature flow
    Nam Q. Le
    Natasa Sesum
    Mathematische Zeitschrift, 2011, 267 : 583 - 604
  • [30] Gaussian mean curvature flow
    Borisenko, Alexander A.
    Miquel, Vicente
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 413 - 423