MEAN CURVATURE FLOW

被引:76
|
作者
Colding, Tobias Holck [1 ]
Minicozzi, William P., II [1 ]
Pedersen, Erik Kjaer [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
MINIMIZING RECTIFIABLE CURRENTS; SINGULARITIES; SURFACES; UNIQUENESS; SETS;
D O I
10.1090/S0273-0979-2015-01468-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur under the flow, what the flow looks like near these singularities, and what this implies for the structure of the singular set. At the end, we will briefly discuss how one may be able to use the flow in low-dimensional topology.
引用
收藏
页码:297 / 333
页数:37
相关论文
共 50 条
  • [1] The mean curvature at the first singular time of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1441 - 1459
  • [2] EXISTENCE OF MEAN CURVATURE FLOW SINGULARITIES WITH BOUNDED MEAN CURVATURE
    Stolarski, Maxwell
    [J]. DUKE MATHEMATICAL JOURNAL, 2023, 172 (07) : 1235 - 1292
  • [3] Singularities of mean curvature flow
    Xin, Yuanlong
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1349 - 1356
  • [4] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [5] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [6] Gaussian mean curvature flow
    Borisenko, Alexander A.
    Miquel, Vicente
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 413 - 423
  • [7] On the extension of the mean curvature flow
    Nam Q. Le
    Natasa Sesum
    [J]. Mathematische Zeitschrift, 2011, 267 : 583 - 604
  • [8] Discrete mean curvature flow
    Imiya, A
    Eckhardt, U
    [J]. SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 477 - 482
  • [9] MEAN CURVATURE FLOW WITH SURGERY
    Haslhofer, Robert
    Kleiner, Bruce
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) : 1591 - 1626
  • [10] Spacelike Mean Curvature Flow
    Lambert, Ben
    Lotay, Jason D.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1291 - 1359