Natural superconvergence points in three-dimensional finite elements

被引:44
|
作者
Lin, Runchang [1 ]
Zhang, Zhimin [2 ]
机构
[1] Texas A&M Int Univ, Dept Math & Phys Sci, Laredo, TX 78041 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
finite element methods; natural superconvergence; hexahedral; pentahedral (triangular prism); tetrahedral elements polynomial;
D O I
10.1137/070681168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic and analytic process is conducted to identify natural superconvergence points of high degree polynomial C(0) finite elements in a three-dimensional setting. This identification is based upon explicitly constructing an orthogonal decomposition of local finite element spaces. Derivative and function value superconvergence points are investigated for both the Poisson and the Laplace equations. Superconvergence results are reported for hexahedral, pentahedral, and tetrahedral elements up to certain degrees.
引用
收藏
页码:1281 / 1297
页数:17
相关论文
共 50 条
  • [41] Superconvergence for rectangular serendipity finite elements
    陈传淼
    Science China Mathematics, 2003, (01) : 1 - 10
  • [42] Superconvergence of tricubic block finite elements
    LIU JingHong SUN HaiNa ZHU QiDing Department of Fundamental Courses Ningbo Institute of Technology Zhejiang University Ningbo China School of Mathematics and Computer Science Hunan Normal University Changsha China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (05) : 959 - 972
  • [43] On superconvergence of isoparametric bilinear finite elements
    Zhang, L
    Li, LK
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1996, 12 (12): : 849 - 862
  • [44] Superconvergence for rectangular serendipity finite elements
    Chuanmiao Chen
    Science in China Series A: Mathematics, 2003, 46 : 1 - 10
  • [45] Superconvergence of tricubic block finite elements
    LIU JingHong1
    Science China Mathematics, 2009, (05) : 959 - 972
  • [46] Superconvergence of tetrahedral quadratic finite elements
    Brandts, J
    Krízek, M
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (01) : 27 - 36
  • [47] Superconvergence of tricubic block finite elements
    JingHong Liu
    HaiNa Sun
    QiDing Zhu
    Science in China Series A: Mathematics, 2009, 52 : 959 - 972
  • [48] Superconvergence for rectangular serendipity finite elements
    Chen, CM
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01): : 1 - 10
  • [49] Superconvergence of tricubic block finite elements
    Liu JingHong
    Sun HaiNa
    Zhu QiDing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 959 - 972
  • [50] Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering
    Perrey-Debain, E
    Laghrouche, O
    Bettess, P
    Trevelyan, J
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1816): : 561 - 577