Natural superconvergence points in three-dimensional finite elements

被引:44
|
作者
Lin, Runchang [1 ]
Zhang, Zhimin [2 ]
机构
[1] Texas A&M Int Univ, Dept Math & Phys Sci, Laredo, TX 78041 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
finite element methods; natural superconvergence; hexahedral; pentahedral (triangular prism); tetrahedral elements polynomial;
D O I
10.1137/070681168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic and analytic process is conducted to identify natural superconvergence points of high degree polynomial C(0) finite elements in a three-dimensional setting. This identification is based upon explicitly constructing an orthogonal decomposition of local finite element spaces. Derivative and function value superconvergence points are investigated for both the Poisson and the Laplace equations. Superconvergence results are reported for hexahedral, pentahedral, and tetrahedral elements up to certain degrees.
引用
收藏
页码:1281 / 1297
页数:17
相关论文
共 50 条
  • [32] Modelling of cyclic shells with complex geometry three-dimensional finite elements
    Yakupov, N. M.
    Kiyamov, H. G.
    Yakupov, S. N.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [33] Three-Dimensional Stabilized Finite Elements for Compressible Navier-Stokes
    Erwin, J. Taylor
    Anderson, W. Kyle
    Kapadia, Sagar
    Wang, Li
    AIAA JOURNAL, 2013, 51 (06) : 1404 - 1419
  • [34] Physically nonlinear shell deformation based on three-dimensional finite elements
    Klochkov, Yu, V
    Nikolaev, A. P.
    Vakhnina, O. V.
    Sobolevskaya, A.
    Klochkov, M. Yu
    MAGAZINE OF CIVIL ENGINEERING, 2022, 113 (05):
  • [35] Analysis of three-dimensional interface cracks using enriched finite elements
    Ayhan, A. O.
    Kaya, A. C.
    Nied, H. F.
    INTERNATIONAL JOURNAL OF FRACTURE, 2006, 142 (3-4) : 255 - 276
  • [36] Improvised Absorbing Boundary Conditions for Three-dimensional Electromagnetic Finite Elements
    Sugahara, K.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1094 - 1097
  • [37] The local superconvergence of the trilinear element for the three-dimensional Poisson problem
    He, Wen-ming
    Guan, Xiao-fei
    Cui, Jun-zhi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 863 - 872
  • [38] Superconvergence of three dimensional Morley elements on cuboid meshes for biharmonic equations
    Jun Hu
    Zhongci Shi
    Xueqin Yang
    Advances in Computational Mathematics, 2016, 42 : 1453 - 1471
  • [39] Superconvergence of three dimensional Morley elements on cuboid meshes for biharmonic equations
    Hu, Jun
    Shi, Zhongci
    Yang, Xueqin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) : 1453 - 1471
  • [40] Superconvergence of tetrahedral linear finite elements
    Chen, Long
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03) : 273 - 282