Natural superconvergence points in three-dimensional finite elements

被引:44
|
作者
Lin, Runchang [1 ]
Zhang, Zhimin [2 ]
机构
[1] Texas A&M Int Univ, Dept Math & Phys Sci, Laredo, TX 78041 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
finite element methods; natural superconvergence; hexahedral; pentahedral (triangular prism); tetrahedral elements polynomial;
D O I
10.1137/070681168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic and analytic process is conducted to identify natural superconvergence points of high degree polynomial C(0) finite elements in a three-dimensional setting. This identification is based upon explicitly constructing an orthogonal decomposition of local finite element spaces. Derivative and function value superconvergence points are investigated for both the Poisson and the Laplace equations. Superconvergence results are reported for hexahedral, pentahedral, and tetrahedral elements up to certain degrees.
引用
收藏
页码:1281 / 1297
页数:17
相关论文
共 50 条
  • [1] SUPERCONVERGENCE BY M-DECOMPOSITIONS. PART III: CONSTRUCTION OF THREE-DIMENSIONAL FINITE ELEMENTS
    Cockburn, Bernardo
    Fu, Guosheng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01): : 365 - 398
  • [2] Pointwise superconvergence of block finite elements for the three-dimensional variable coefficient elliptic equation
    Liu, Jinghong
    Li, Qiyong
    AIMS MATHEMATICS, 2024, 9 (10): : 28611 - 28622
  • [3] Three-dimensional shapes of a finite set of points
    Melkemi, M
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (02) : 301 - 318
  • [4] On equilibrium finite elements in three-dimensional case
    Department of Mathematics, University of Jyväskylä, P. O. Box 35, SF-40351 Jyväskylä, Finland
    Applications of Mathematics, 42 (03): : 233 - 242
  • [5] On equilibrium finite elements in three-dimensional case
    Korotov S.
    Applications of Mathematics, 1997, 42 (3) : 233 - 242
  • [6] Superconvergence phenomena on three-dimensional meshes
    Krizek, Michal
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2005, 2 (01) : 43 - 56
  • [7] Adhesion modelling by finite elements of three-dimensional fretting
    Yang, Huaidong
    Green, Itzhak
    TRIBOLOGY INTERNATIONAL, 2021, 156
  • [8] Interlaminar stress recovery for three-dimensional finite elements
    Fagiano, C.
    Abdalla, M. M.
    Kassapoglou, C.
    Gurdal, Z.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (03) : 530 - 538
  • [9] Three-dimensional finite elements of steel bolted connections
    Ju, SH
    Fan, CY
    Wu, GH
    ENGINEERING STRUCTURES, 2004, 26 (03) : 403 - 413
  • [10] Modelling of rotors with three-dimensional solid finite elements
    Nandi, A
    Neogy, S
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2001, 36 (04): : 359 - 371