A posteriori error estimates taking into account indeterminacy of the problem data

被引:0
|
作者
Repin, SI [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
关键词
D O I
10.1515/156939803322681167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many cases, values of the problem data (coefficients of a differential equation, boundary conditions, and right-hand sides) are not given exactly. In practical problems, we only know that they belong to certain sets of possible data values. Therefore estimation of errors of the approximate solution must take into account not only the approximation error, but also those arising due to indeterminacy of the data. The objective of this paper is to introduce a general scheme for deriving a posteriori estimates of this type. The method is based upon using functional-type a posteriori estimates that have been earlier derived in [5, 6, 8] and some other papers for boundary-value problems with operators of elliptic type. Estimates obtained in the paper are of two types. They show the errors in the worst- and best-case situations depending on the way the data error is combined with the approximation one.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 50 条
  • [11] A posteriori error estimates for the Stokes problem with singular sources
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 1007 - 1032
  • [12] A posteriori error estimates for the problem of electrostatics with a dipole source
    Rodriguez, A. Alonso
    Camano, J.
    Rodriguez, R.
    Valli, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (04) : 464 - 485
  • [13] Functional A Posteriori Error Estimates for the Parabolic Obstacle Problem
    Apushkinskaya, Darya
    Repin, Sergey
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (02) : 259 - 276
  • [14] A POSTERIORI ERROR ESTIMATES FOR THE ALLEN-CAHN PROBLEM
    Chrysafinos, Konstantinos
    Georgoulis, Emmanuil H.
    Plaka, Dimitra
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2662 - 2683
  • [15] POSTERIORI ERROR ESTIMATES
    MIEL, G
    [J]. MATHEMATICS OF COMPUTATION, 1977, 31 (137) : 204 - 213
  • [16] A POSTERIORI ESTIMATES OF ERROR
    KRASNOSE.MA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1968, 181 (05): : 1058 - &
  • [17] A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions
    Repin, S
    Sauter, S
    Smolianski, A
    [J]. COMPUTING, 2003, 70 (03) : 205 - 233
  • [18] A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions
    S. Repin
    S. Sauter
    A. Smolianski
    [J]. Computing, 2003, 70 : 205 - 233
  • [19] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [20] A Posteriori Error Estimates for Darcy-Forchheimer's Problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 517 - 544