Eigenvalue inequalities for positive block matrices with the inradius of the numerical range

被引:2
|
作者
Bourin, Jean-Christophe [1 ]
Lee, Eun-Young [2 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math, F-25000 Besancon, France
[2] Kyungpook Natl Univ, KNU Ctr Nonlinear Dynam, Dept Math, Daegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
Numerical range; partitioned matrices; eigenvalue inequalities;
D O I
10.1142/S0129167X22500094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the operator norm inequality, for a positive matrix partitioned into four blocks in Mn, parallel to [GRAPHICS] parallel to(infinity) <= parallel to A + B parallel to(infinity) + delta(X), where delta(X) is the diameter of the largest possible disc in the numerical range of X. This shows that the inradius epsilon(X) := delta(X)/2 satisfies epsilon(X) >= parallel to X parallel to(infinity) - parallel to(|X*|+ |X|)/2 parallel to(infinity). Several eigenvalue inequalities are derived. In particular, if X is a normal matrix whose spectrum lies in a disc of radius r, the third eigenvalue of the full matrix is bounded by the second eigenvalue of the sum of the diagonal block, lambda(3) ( [GRAPHICS] ) <= lambda(2) (A + B) + r. We think that r is optimal and we propose a conjecture related to a norm inequality of Hayashi.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] On the Block Numerical Range of Nonnegative Matrices
    Foerster, K.-H.
    Hartanto, N.
    SPECTRAL THEORY IN INNER PRODUCT SPACES AND APPLICATIONS, 2009, 188 : 113 - 133
  • [12] Positive block matrices and numerical ranges
    Bourin, Jean-Christophe
    Mhanna, Antoine
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (10) : 1077 - 1081
  • [13] Approximation of the Block Numerical Range of Block Operator Matrices
    Yu, Jiahui
    Chen, Alatancang
    Huang, Junjie
    Wu, Jiaojiao
    FILOMAT, 2019, 33 (12) : 3877 - 3881
  • [14] Inequalities for partial determinants of positive semidefinite block matrices
    Xu, Huan
    Fu, Xiaohui
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (03): : 379 - 388
  • [15] Inequalities on partial traces of positive semidefinite block matrices
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 964 - 969
  • [16] PARTIAL DETERMINANT INEQUALITIES FOR POSITIVE SEMIDEFINITE BLOCK MATRICES
    Li, Yongtao
    Lin, Xiqin
    Feng, Lihua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1435 - 1445
  • [17] PROBLEM OF EQUALITIES IN EIGENVALUE INEQUALITIES FOR PRODUCTS OF POSITIVE SEMIDEFINITE HERMITIAN MATRICES
    Xi Boyan(Inner Mongolia Teachers College for Nationalities
    Numerical Mathematics(Theory,Methods and Applications), 2000, (S1) : 95 - 97
  • [18] PROBLEM OF EQUALITIES IN EIGENVALUE INEQUALITIES FOR PRODUCTS OF POSITIVE SEMIDEFINITE HERMITIAN MATRICES
    Xi BoyanInner Mongolia Teachers College for NationalitiesTongliao PRC
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2000, (EnglishSeries) : 95 - 97
  • [19] Generalizations of Numerical Radius Inequalities Related to Block Matrices
    Burqan, Aliaa
    Abu-Rahma, Ahmad
    FILOMAT, 2019, 33 (15) : 4981 - 4987
  • [20] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    Aghideh, M. Ghaderi
    Moslehian, M. S.
    Rooin, J.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 687 - 703