Any positive matrix Mpartitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality parallel to M parallel to <= parallel to M1,1 + M2,2 + omega I parallel to, where omega is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
机构:
Univ Bourgogne Franche Comte, CNRS, Lab Math Besancon, UMR 6623, Besancon, FranceUniv Bourgogne Franche Comte, CNRS, Lab Math Besancon, UMR 6623, Besancon, France
Bourin, Jean-Christophe
Lee, Eun-Young
论文数: 0引用数: 0
h-index: 0
机构:
Kyungpook Natl Univ, KNU Ctr Nonlinear Dynam, Dept Math, Daegu 702701, South KoreaUniv Bourgogne Franche Comte, CNRS, Lab Math Besancon, UMR 6623, Besancon, France