This paper concerns both norm estimation and pointwise approximation for the Bochner-Riesz means of an arbitrary Morrey function on R-n-Theorems 1.1 and 1.2 for L-p,L-lambda(R-n)-thereby generalizing the corresponding results for L-p(R-n) in Stein (Acta Math 100:93-147, 1958) and Carbery et al. (J Lond Math Soc 38:513-524, 1988). As a side note, this paper also establishes Lemma 4.1 of Tomas-Stein type-if f is an element of L-p,L-lambda(R-n) under 2(-1)(n + 1) < lambda = n is compactly supported, then parallel to<(f)over cap>parallel to(L2(Sn-1)) less than or similar to parallel to f parallel to(Lp,lambda(Rn)) for 4 lambda/n + 1 + 2 lambda <= p < 2 lambda/n + 1.
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
Chen, Peng
Lee, Sanghyuk
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Sch Math Sci, Seoul 151742, South KoreaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
Lee, Sanghyuk
Sikora, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Dept Math, Sydney, NSW 2109, AustraliaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
Sikora, Adam
Yan, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
Macquarie Univ, Dept Math, Sydney, NSW 2109, AustraliaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China