Weighted norm inequalities of Bochner-Riesz means

被引:15
|
作者
Lee, Ming-Yi [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
关键词
A(p) weights; atomic decomposition; Bochner-Riesz means; molecular characterization; weighted Hardy spaces;
D O I
10.1016/j.jmaa.2005.07.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let w be a Muckenhoupt weight and H-w(p)(R-n) be the weighted Hardy spaces. We use the atomic decomposition of H-w(p)(R-n) and their molecular characters to show that the Bochner-Riesz means T-R(delta) are bounded on H-w(p)(R-n) for 0 < p <= 1 and delta > max{n/p - (n + 1)/2, [n/p]r(w)(r(w) - 1)(-1) - (n + 1)/2}, where r(w) is the critical index of w for the reverse Holder condition. We also prove the H-w(p) - L-w(p) boundedness of the maximal Bochner-Riesz means T-*(delta) for 0 < p <= 1 and delta > n/p - (n + 1)/2. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1274 / 1281
页数:8
相关论文
共 50 条