Weighted norm inequalities of the maximal commutator of quasiradial Bochner-Riesz operators

被引:1
|
作者
Kim, Yong Cheol [1 ]
机构
[1] Korea Univ, Dept Math Educ, Seoul 136701, South Korea
关键词
Commutator; quasiradial Bochner-Riesz operators; weighted norm inequalities; SINGULAR INTEGRAL-OPERATORS; HARDY-SPACES;
D O I
10.1007/s10114-013-1335-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain certain L (w) (p) (a"e (n) )-mapping properties for the maximal operator associated with the commutators of quasiradial Bochner-Riesz means with index delta under certain surface condition on I pound (I +/- d) , provided that delta > (n - 1)/2, b a BMO(a"e (n) ), 1 < p < a and w a A (1). Moreover, if delta > (n - 1)/2, then we prove that the above maximal operator admits weak type (H (w) (1) (a"e (n) ), L (w) (1) (a"e (n) ))-mapping properties for b a BMO(a"e (n) ) and w a A (1) under the surface condition on I pound (I +/- d) .
引用
收藏
页码:1743 / 1756
页数:14
相关论文
共 50 条