Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model

被引:85
|
作者
Enatsu, Yoichi [1 ]
Nakata, Yukihiko [2 ]
Muroya, Yoshiaki [3 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Basque Ctr Appl Math, E-48009 Bilbao, Spain
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SIRS epidemic model; Nonlinear incidence rate; Global asymptotic stability; Lyapunov functional; Distributed delays; BEHAVIOR;
D O I
10.1016/j.nonrwa.2012.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global dynamics of a delayed SIRS epidemic model for transmission of disease with a class of nonlinear incidence rates of the form beta S(t) integral(h)(0), f(tau)G(I(t - tau))d tau. Applying Lyapunov functional techniques in the recent paper [Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Discrete Contin. Dyn. Syst. Supplement (2011) 1119-1128], we establish sufficient conditions of the rate of immunity loss for the global asymptotic stability of an endemic equilibrium for the model. In particular, we offer a unified construction of Lyapunov functionals for both cases of R-0 <= 1 and R-0 > 1, where R-0 is the basic reproduction number. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2120 / 2133
页数:14
相关论文
共 50 条
  • [41] Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate
    Liu, Lijun
    Wei, Xiaodan
    Zhang, Naimin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 515 : 587 - 599
  • [42] Optimal Control of a Delayed SIRS Epidemic Model with Vaccination and Treatment
    Laarabi, Hassan
    Abta, Abdelhadi
    Hattaf, Khalid
    ACTA BIOTHEORETICA, 2015, 63 (02) : 87 - 97
  • [43] Global dynamics of an SIRS epidemic model with saturation incidence
    Hao, Lijie
    Jiang, Guirong
    Liu, Suyu
    Ling, Lin
    BIOSYSTEMS, 2013, 114 (01) : 56 - 63
  • [44] Optimal Control of a Delayed SIRS Epidemic Model with Vaccination and Treatment
    Hassan Laarabi
    Abdelhadi Abta
    Khalid Hattaf
    Acta Biotheoretica, 2015, 63 : 87 - 97
  • [45] Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models
    Korobeinikov, A
    Wake, GC
    APPLIED MATHEMATICS LETTERS, 2002, 15 (08) : 955 - 960
  • [46] An exact global solution for the classical SIRS epidemic model
    Acedo, L.
    Gonzalez-Parra, Gilberto
    Arenas, Abraham J.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1819 - 1825
  • [47] Travelling waves of a delayed SIRS epidemic model with spatial diffusion
    Gan, Qintao
    Xu, Rui
    Yang, Pinghua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 52 - 68
  • [48] Stability and Bifurcation Analysis for a Delayed SEI Epidemic Model
    Li, Xumeng
    Huang, Lihong
    Wang, Xiaohui
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 679 - 682
  • [49] Stability Analysis of a Delayed SEIRQ Epidemic Model with Diffusion
    Anaama, E.
    Allalou, C.
    Hilal, K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42