Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model

被引:85
|
作者
Enatsu, Yoichi [1 ]
Nakata, Yukihiko [2 ]
Muroya, Yoshiaki [3 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Basque Ctr Appl Math, E-48009 Bilbao, Spain
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SIRS epidemic model; Nonlinear incidence rate; Global asymptotic stability; Lyapunov functional; Distributed delays; BEHAVIOR;
D O I
10.1016/j.nonrwa.2012.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global dynamics of a delayed SIRS epidemic model for transmission of disease with a class of nonlinear incidence rates of the form beta S(t) integral(h)(0), f(tau)G(I(t - tau))d tau. Applying Lyapunov functional techniques in the recent paper [Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Discrete Contin. Dyn. Syst. Supplement (2011) 1119-1128], we establish sufficient conditions of the rate of immunity loss for the global asymptotic stability of an endemic equilibrium for the model. In particular, we offer a unified construction of Lyapunov functionals for both cases of R-0 <= 1 and R-0 > 1, where R-0 is the basic reproduction number. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2120 / 2133
页数:14
相关论文
共 50 条
  • [21] Dynamics for a stochastic delayed SIRS epidemic model
    Shi, Xiangyun
    Cao, Yimeng
    Zhou, Xueyong
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (05): : 705 - 725
  • [22] A delayed SIRS epidemic model with pulse vaccination
    Pang, Guoping
    Chen, Lansun
    CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1629 - 1635
  • [23] A delayed SIRS epidemic model with pulse vaccination
    Pang, Guoping
    Chen, Lansun
    Chaos, Solitons and Fractals, 2007, 34 (05): : 1629 - 1635
  • [24] Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model
    Lahrouz, A.
    Omari, L.
    Kiouach, D.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2011, 16 (01): : 59 - 76
  • [25] On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate
    Buonomo, Bruno
    Rionero, Salvatore
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 4010 - 4016
  • [26] Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates
    Enatsu, Yoichi
    Messina, Eleonora
    Nakata, Yukihiko
    Muroya, Yoshiaki
    Russo, Elvira
    Vecchio, Antonia
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 39 (1-2) : 15 - 34
  • [27] Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates
    Yoichi Enatsu
    Eleonora Messina
    Yukihiko Nakata
    Yoshiaki Muroya
    Elvira Russo
    Antonia Vecchio
    Journal of Applied Mathematics and Computing, 2012, 39 (1-2) : 15 - 34
  • [28] Global stability analysis of a delayed susceptible-infected-susceptible epidemic model
    Paulhus, Calah
    Wang, Xiang-Sheng
    JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 : 45 - 50
  • [29] On the local and global stability of an sirs epidemic model with logistic growth and information intervention
    Cay, Irem
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1668 - 1677
  • [30] Local and global bifurcations in an SIRS epidemic model
    Song, Zigen
    Xu, Jian
    Li, Qunhong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) : 534 - 547