Algebraic formulation of quantum error correction

被引:3
|
作者
Beny, Cedric [1 ]
Kribs, David W. [2 ,3 ]
Pasieka, Aron [4 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
关键词
quantum computing; quantum error correction; operator algebra;
D O I
10.1142/S0219749908003839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a brief introduction to the algebraic formulation of error correction in quantum computing called operator algebra quantum error correction (OAQEC). Then we extend one of the basic results for subsystem codes in operator quantum error correction (OQEC) to the OAQEC setting: Every hybrid classical-quantum code is shown to be unitarily recoverable in an appropriate sense. The algebraic approach of the proof yields a new, less technical proof for the OQEC case.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 50 条
  • [31] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [32] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [33] Methods of quantum error correction
    Grassl, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 740 - 743
  • [34] Nonlinear quantum error correction
    Reichert, Maximilian
    Tessler, Louis W.
    Bergmann, Marcel
    van Loock, Peter
    Byrnes, Tim
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [35] Catalytic Quantum Error Correction
    Brun, Todd A.
    Devetak, Igor
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3073 - 3089
  • [36] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [37] Quantum error correction of observables
    Beny, Cedric
    Kempf, Achim
    Kribs, David W.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [38] Closing In on Quantum Error Correction
    Monroe, Don
    COMMUNICATIONS OF THE ACM, 2019, 62 (10) : 11 - 13
  • [39] Motional quantum error correction
    Steinbach, J
    Twamley, J
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 453 - 485
  • [40] Approaches to quantum error correction
    Kempe, Julia
    QUANTUM DECOHERENCE: POINCARE SEMINAR 2005, 2007, 48 : 85 - 123