Generalized N=2 topological amplitudes and holomorphic anomaly equation

被引:7
|
作者
Antoniadis, I. [2 ]
Hohenegger, S. [1 ]
Narain, K. S. [3 ]
Sokatchev, E. [2 ,4 ,5 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[2] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[3] Abdus Salam Int Ctr Theoret Phys, High Energy Sect, I-1134014 Trieste, Italy
[4] Inst Univ France, F-75005 Paris, France
[5] Univ Savoie, CNRS, LAPTH, F-74941 Annecy Le Vieux, France
关键词
COUPLINGS; COMPLEX; MATTER;
D O I
10.1016/j.nuclphysb.2011.11.011
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In arXiv:0905.3629 we described a new class of N = 2 topological amplitudes that depends both on vector and hypermultiplet moduli. Here we find that this class is actually a particular case of much more general topological amplitudes which appear at higher loops in heterotic string theory compactified on K3 x T-2. We analyze their effective field theory interpretation and derive particular (first order) differential equations as a consequence of supersymmetry Ward identities and the 1/2-BPS nature of the corresponding effective action terms. In string theory the latter get modified due to anomalous world-sheet boundary contributions, generalizing in a non-trivial way the familiar holomorphic and harmonicity anomalies studied in the past. We prove by direct computation that the subclass of topological amplitudes studied in arXiv:0905.3629 forms a closed set under these anomaly equations and that these equations are integrable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 412
页数:53
相关论文
共 50 条
  • [41] Conformal anomaly for amplitudes in N=6 superconformal Chern-Simons theory
    Bargheer, Till
    Beisert, Niklas
    Loebbert, Florian
    McLoughlin, Tristan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (47)
  • [42] Quasi-modularity and Holomorphic Anomaly Equation for the Twisted Gromov–Witten Theory: O(3) over P2
    Xin WANG
    Acta Mathematica Sinica,English Series, 2019, (12) : 1945 - 1962
  • [43] Proper Holomorphic Mappings Between n-generalized Hartogs Triangles
    Feng Rong
    Shuo Zhang
    Acta Mathematica Sinica, English Series, 2022, 38 : 1002 - 1014
  • [44] Proper Holomorphic Mappings Between n-generalized Hartogs Triangles
    Feng RONG
    Shuo ZHANG
    Acta Mathematica Sinica,English Series, 2022, (06) : 1002 - 1014
  • [45] Proper Holomorphic Mappings Between n-generalized Hartogs Triangles
    Rong, Feng
    Zhang, Shuo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (06) : 1002 - 1014
  • [46] Enhanced gauge groups in N=4 topological amplitudes and Lorentzian Borcherds algebras
    Hohenegger, Stefan
    Persson, Daniel
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [47] Modular anomaly equation, heat kernel and S-duality in N=2 theories
    Billo, M.
    Frau, M.
    Gallot, L.
    Lerda, A.
    Pesando, I.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [48] ON THE AMPLITUDES FOR NONCRITICAL N=2 SUPERSTRINGS
    ABDALLA, E
    ABDALLA, MCB
    DALMAZI, D
    PHYSICS LETTERS B, 1992, 291 (1-2) : 32 - 38
  • [49] n-Homogeneous and LH Generalized Topological Spaces
    Al Ghour, Samer H.
    Al-Deiakeh, Rawia M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 73 - 79
  • [50] n-Homogeneous and LH Generalized Topological Spaces
    Samer H. Al Ghour
    Rawia M. Al-Deiakeh
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 73 - 79