Generalized N=2 topological amplitudes and holomorphic anomaly equation

被引:7
|
作者
Antoniadis, I. [2 ]
Hohenegger, S. [1 ]
Narain, K. S. [3 ]
Sokatchev, E. [2 ,4 ,5 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[2] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[3] Abdus Salam Int Ctr Theoret Phys, High Energy Sect, I-1134014 Trieste, Italy
[4] Inst Univ France, F-75005 Paris, France
[5] Univ Savoie, CNRS, LAPTH, F-74941 Annecy Le Vieux, France
关键词
COUPLINGS; COMPLEX; MATTER;
D O I
10.1016/j.nuclphysb.2011.11.011
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In arXiv:0905.3629 we described a new class of N = 2 topological amplitudes that depends both on vector and hypermultiplet moduli. Here we find that this class is actually a particular case of much more general topological amplitudes which appear at higher loops in heterotic string theory compactified on K3 x T-2. We analyze their effective field theory interpretation and derive particular (first order) differential equations as a consequence of supersymmetry Ward identities and the 1/2-BPS nature of the corresponding effective action terms. In string theory the latter get modified due to anomalous world-sheet boundary contributions, generalizing in a non-trivial way the familiar holomorphic and harmonicity anomalies studied in the past. We prove by direct computation that the subclass of topological amplitudes studied in arXiv:0905.3629 forms a closed set under these anomaly equations and that these equations are integrable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 412
页数:53
相关论文
共 50 条
  • [21] Refined topological amplitudes in N=1 flux compactification
    Nakayama, Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11):
  • [22] N=4 topological amplitudes and string effective action
    Antoniadis, I.
    Hohenegger, S.
    Narain, K. S.
    NUCLEAR PHYSICS B, 2007, 771 (1-2) : 40 - 92
  • [23] N=4 topological amplitudes and black hole entropy
    Antoniadis, I.
    Hohenegger, S.
    NUCLEAR PHYSICS B, 2010, 837 (1-2) : 61 - 89
  • [24] On the algebraic structure of the holomorphic anomaly for (c)over-cap=3 topological strings
    Lopez, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 104 (01) : 793 - 802
  • [25] The generalized Fermat equation with exponents 2, 3, n
    Freitas, Nuno
    Naskrecki, Bartosz
    Stoll, Michael
    COMPOSITIO MATHEMATICA, 2020, 156 (01) : 77 - 113
  • [26] Holomorphic anomaly equation for (P2, E) and the Nekrasov-Shatashvili limit of local P2
    Bousseau, Pierrick
    Fan, Honglu
    Guo, Shuai
    Wu, Longting
    FORUM OF MATHEMATICS PI, 2021, 9
  • [27] Note on generalized symmetries, gapless excitations, generalized symmetry protected topological states, and anomaly
    Jian, Chao-Ming
    Xu, Cenke
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (03):
  • [28] Generalized unitarity for N=4 super-amplitudes
    Drummond, J. M.
    Henn, J.
    Korchemsky, G. P.
    Sokatchev, E.
    NUCLEAR PHYSICS B, 2013, 869 (03) : 452 - 492
  • [29] Crepant resolution and the holomorphic anomaly equation for [C3/Z3]
    Lho, Hyenho
    Pandharipande, Rahul
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (03) : 781 - 813
  • [30] Topological 1-soliton solution of the generalized KdV equation with generalized evolution
    Sturdevant, Benjamin J. M.
    Biswas, Anjan
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 2289 - 2294