Solitons in optical metamaterials with fractional temporal evolution

被引:46
|
作者
Ekici, Mehmet [1 ]
Mirzazadeh, Mohammad [2 ]
Zhou, Qin [3 ]
Moshokoa, Seithuti P. [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[2] Univ Guilan, Fac Technol & Engn, Dept Engn Sci, East Guilan, Rudsar Vajargah 4489163157, Iran
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2016年 / 127卷 / 22期
基金
中国国家自然科学基金;
关键词
Solitons; Adomian decomposition; BRIGHT; EQUATION; ORDER;
D O I
10.1016/j.ijleo.2016.09.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains bright, dark and singular soliton solutions in optical metamaterials with fractional temporal evolution where Jumarie's modified Riemann-Liousville derivative is considered. There are four types of nonlinear metamaterials that are studied. These are Kerr law, power law, parabolic law and dual-power law. The integration scheme that is employed is the extended trial equation method. The existence of these solitons are guaranteed with constraint conditions. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:10879 / 10897
页数:19
相关论文
共 50 条
  • [21] Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp (-Φ(ξ))-expansion
    Ferdous, F.
    Hafez, M. G.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Alfiras, Mohanad
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2019, 178 : 439 - 448
  • [22] Solitons in optical metamaterials by mapping method
    Krishnan, E. V.
    Ghabshi, M. Al
    Zhou, Q.
    Khan, K. R.
    Mahmood, M. F.
    Xu, Yanan
    Biswas, Anjan
    Belic, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (3-4): : 511 - 516
  • [23] Optical solitons in optical metamaterials with anti-cubic
    Zhang, Jian
    OPTIK, 2022, 251
  • [24] Optical Solitons and Other Solutions to the (2+1)-Dimensional Cubic Nonlinear Schrodinger Equation with Fractional Temporal Evolution
    Atas, Sibel Sehriban
    Sulaiman, Tukur Abdulkadir
    Bulut, Hasan
    THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2018), 2018, 22
  • [25] Solitons in nonlinear directional couplers with optical metamaterials
    Jose Vega-Guzman
    M. F. Mahmood
    Qin Zhou
    Houria Triki
    Ahmed H. Arnous
    Anjan Biswas
    Seithuti P. Moshokoa
    Milivoj Belic
    Nonlinear Dynamics, 2017, 87 : 427 - 458
  • [26] Solitons in nonlinear directional couplers with optical metamaterials
    Vega-Guzman, Jose
    Mahmood, M. F.
    Zhou, Qin
    Triki, Houria
    Arnous, Ahmed H.
    Biswas, Anjan
    Moshokoa, Seithuti P.
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2017, 87 (01) : 427 - 458
  • [27] Conservation laws for perturbed solitons in optical metamaterials
    Biswas, Anjan
    Yasar, Emrullah
    Yildirim, Yakup
    Triki, Houria
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    RESULTS IN PHYSICS, 2018, 8 : 898 - 902
  • [28] Optical Magnetism in Temporal Metamaterials
    Rizzal, C.
    Castaldi, G.
    Galdi, V
    2021 FIFTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2021, : X377 - X379
  • [29] Temporal solitons in optical microresonators
    Herr, T.
    Brasch, V.
    Jost, J. D.
    Wang, C. Y.
    Kondratiev, N. M.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    NATURE PHOTONICS, 2014, 8 (02) : 145 - 152
  • [30] Radiating subdispersive fractional optical solitons
    Fujioka, J.
    Espinosa, A.
    Rodriguez, R. F.
    Malomed, B. A.
    CHAOS, 2014, 24 (03)