Optical Solitons and Other Solutions to the (2+1)-Dimensional Cubic Nonlinear Schrodinger Equation with Fractional Temporal Evolution

被引:3
|
作者
Atas, Sibel Sehriban [1 ]
Sulaiman, Tukur Abdulkadir [1 ,2 ]
Bulut, Hasan [1 ,3 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
[2] Fed Univ Dutse, Dept Math, Jigawa, Nigeria
[3] Final Univ, Dept Math Educ, Girne, Cyprus
关键词
COMPLEX;
D O I
10.1051/itmconf/20182201053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the (2+1)-dimensional cubic nonlinear Schrodinger equation with fractional temporal evolution is investigated by using the extended sinh-Gordon equation expansion method. The idea of conformable fractional derivative is used in transforming the complex nonlinear partial differential equation to nonlinear ordinary differential equation. Dark, bright, mixed dark-bright, singular, mixed singular solitons and singular periodic wave solutions are successfully reached. The parametric conditions for the existence of valid solitons are given. The 2D and 3D graphics to some of the reported solutions are plotted.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optical solitons and periodic solutions of the (2+1)-dimensional nonlinear Schrodinger's equation
    Feng, Dahe
    Jiao, Jianjun
    Jiang, Guirong
    [J]. PHYSICS LETTERS A, 2018, 382 (32) : 2081 - 2084
  • [2] Bright and dark envelope optical solitons for a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Wazwaz, Abdul-Majid
    Alhejaili, Weaam
    El-Tantawy, S. A.
    [J]. OPTIK, 2022, 265
  • [3] Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation
    Zuo, Da-Wei
    Jia, Hui-Xian
    Shan, Dong-Ming
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 522 - 528
  • [4] Optical solitons, complexitons and power series solutions of a (2+1)-dimensional nonlinear Schrodinger equation
    Peng, Wei-Qi
    Tian, Shou-Fu
    Zhang, Tian-Tian
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (28):
  • [5] Optical solitons of the (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersion in quadratic-cubic media
    Zhao, Ya-nan
    Guo, Li-feng
    [J]. PHYSICA SCRIPTA, 2023, 98 (11)
  • [6] Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger's equation
    Sulaiman, Tukur Abdulkadir
    Younas, Usman
    Younis, Muhammad
    Ahmad, Jamshad
    Shafqat-ur-Rehman
    Bilal, Muhammad
    Yusuf, Abdullahi
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (01): : 179 - 190
  • [7] The (2+1)-dimensional hyperbolic nonlinear Schrodinger equation and its optical solitons
    Baleanu, Umitru
    Hosseini, Kamyar
    Salahshour, Soheil
    Sadri, Khadijeh
    Mirzazadeh, Mohammad
    Park, Choonkil
    Ahmadian, Ali
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9568 - 9581
  • [8] Dynamics of optical solitons in the (2+1)-dimensional chiral nonlinear Schrodinger equation
    Tetchoka-Manemo, Cedric
    Tala-Tebue, Eric
    Inc, Mustafa
    Ejuh, Geh Wilson
    Kenfack-Jiotsa, Aurelien
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [9] A new approach for solutions of the (2+1)-dimensional cubic nonlinear Schrodinger equation
    Zhi Hongyan
    Zhang Hongqing
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 120 - 129
  • [10] Optical solitons of (2+1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects
    Matinfar, M.
    Hosseini, K.
    [J]. OPTIK, 2021, 228