STABILITY AND CONVERGENCE ANALYSIS OF THE EXTENSIONS OF THE KINEMATICALLY COUPLED SCHEME FOR THE FLUID-STRUCTURE INTERACTION

被引:26
|
作者
Bukac, Martina [1 ]
Muha, Boris [2 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
基金
美国国家科学基金会;
关键词
fluid-structure interaction; error estimates; convergence rates; noniterative scheme; STABLE PARTITIONED ALGORITHM; INCOMPRESSIBLE-FLOW; MASS; HEMODYNAMICS; SOLVERS;
D O I
10.1137/16M1055396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze the stability and convergence properties of a loosely-coupled scheme, called the kinematically coupled scheme, and its extensions for the interaction between an incompressible, viscous fluid and a thin, elastic structure. We consider a benchmark problem where the structure is modeled using a general thin structure model, and the coupling between the fluid and structure is linear. We derive the energy estimates associated with the unconditional stability of an extension of the kinematically coupled scheme, called the beta-scheme. Furthermore, for the first time we present a priori estimates showing optimal, first-order in time convergence in the case where beta-1. We further discuss the extensions of our results to other fluid-structure interaction problems, in particular the fluid-thick structure interaction problem. The theoretical stability and convergence results are supported with numerical examples.
引用
收藏
页码:3032 / 3061
页数:30
相关论文
共 50 条
  • [41] FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 459 - 469
  • [42] Fluid-structure interaction
    Technical Program Representative FSI
    ASME Pressure Vessels Piping Div. Publ. PVP, 2006,
  • [43] Operational modal analysis and fluid-structure interaction
    Vigso, M.
    Kabel, T.
    Tarpo, M.
    Brincker, R.
    Georgakis, C.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 2793 - 2803
  • [44] Fluid-structure interaction analysis of flexible turbomachinery
    Campbell, R. L.
    Paterson, E. G.
    JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (08) : 1376 - 1391
  • [45] Consistency analysis of fluid-structure interaction algorithms
    Blom, FJ
    Leyland, P
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 1026 - 1031
  • [46] Fluid-structure interaction analysis of valve in pipes
    Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
    Zhejiang Daxue Xuebao (Gongxue Ban), 2006, 6 (971-976):
  • [47] Analysis of a linear fluid-structure interaction problem
    Du, Q
    Gunzberger, MD
    Hou, LS
    Lee, J
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 633 - 650
  • [48] Strongly coupled simulation of fluid-structure interaction in a Francis hydroturbine
    Wang, W. Q.
    He, X. Q.
    Zhang, L. X.
    Liew, K. M.
    Guo, Y.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (05) : 515 - 538
  • [49] Numerical study of coupled fluid-structure interaction for combustion system
    Khatir, Z.
    Pozarlik, A. K.
    Cooper, R. K.
    Watterson, J. W.
    Kok, J. B. W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1343 - 1349
  • [50] ACCELERATION OF STRONGLY COUPLED FLUID-STRUCTURE INTERACTION WITH MANIFOLD MAPPING
    Blom, David S.
    Van Zuijlen, Alexander H.
    Bijl, Hester
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 4484 - 4495