STABILITY AND CONVERGENCE ANALYSIS OF THE EXTENSIONS OF THE KINEMATICALLY COUPLED SCHEME FOR THE FLUID-STRUCTURE INTERACTION

被引:26
|
作者
Bukac, Martina [1 ]
Muha, Boris [2 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
基金
美国国家科学基金会;
关键词
fluid-structure interaction; error estimates; convergence rates; noniterative scheme; STABLE PARTITIONED ALGORITHM; INCOMPRESSIBLE-FLOW; MASS; HEMODYNAMICS; SOLVERS;
D O I
10.1137/16M1055396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze the stability and convergence properties of a loosely-coupled scheme, called the kinematically coupled scheme, and its extensions for the interaction between an incompressible, viscous fluid and a thin, elastic structure. We consider a benchmark problem where the structure is modeled using a general thin structure model, and the coupling between the fluid and structure is linear. We derive the energy estimates associated with the unconditional stability of an extension of the kinematically coupled scheme, called the beta-scheme. Furthermore, for the first time we present a priori estimates showing optimal, first-order in time convergence in the case where beta-1. We further discuss the extensions of our results to other fluid-structure interaction problems, in particular the fluid-thick structure interaction problem. The theoretical stability and convergence results are supported with numerical examples.
引用
下载
收藏
页码:3032 / 3061
页数:30
相关论文
共 50 条
  • [21] Partitioned solver for strongly coupled fluid-structure interaction
    Habchi, Charbel
    Russeil, Serge
    Bougeard, Daniel
    Harion, Jean-Luc
    Lemenand, Thierry
    Ghanem, Akram
    Della Valle, Dominique
    Peerhossaini, Hassan
    COMPUTERS & FLUIDS, 2013, 71 : 306 - 319
  • [22] Coupled free vibrations of fluid-structure interaction system
    Seghir, Abdelghani
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2021, 83 (02): : 45 - 60
  • [23] NKS for Fully Coupled Fluid-Structure Interaction with Application
    Barker, Andrew T.
    Cai, Xiao-Chuan
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 275 - 282
  • [24] FULLY COUPLED FLUID-STRUCTURE INTERACTION FOR OFFSHORE APPLICATIONS
    Jaiman, Rajeev K.
    Shakib, Farzin
    Oakley, Owen H., Jr.
    Constantinides, Yiannis
    OMAE 2009, VOL 5, 2009, : 757 - 765
  • [25] Development and Verification of Coupled Fluid-Structure Interaction Solver
    Schemmel, Avery
    Palakurthy, Seshendra
    Zope, Anup
    Collins, Eric
    Bhushan, Shanti
    COMPUTATION, 2024, 12 (06)
  • [26] Coupled free vibrations of fluid-structure interaction system
    Seghir, Abdelghani
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2020, 83 (02): : 45 - 60
  • [27] Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
    Lars Radtke
    Axel Larena-Avellaneda
    Eike Sebastian Debus
    Alexander Düster
    Computational Mechanics, 2016, 57 : 901 - 920
  • [28] An improved state-space method for coupled fluid-structure interaction analysis
    Cunefare, KA
    De Rosa, S
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (01): : 206 - 210
  • [29] Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve
    Feng, Liuyang
    Gao, Hao
    Griffith, Boyce
    Niederer, Steven
    Luo, Xiaoyu
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2019, 35 (11)
  • [30] Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
    Radtke, Lars
    Larena-Avellaneda, Axel
    Debus, Eike Sebastian
    Duester, Alexander
    COMPUTATIONAL MECHANICS, 2016, 57 (06) : 901 - 920