STABILITY AND CONVERGENCE ANALYSIS OF THE EXTENSIONS OF THE KINEMATICALLY COUPLED SCHEME FOR THE FLUID-STRUCTURE INTERACTION

被引:26
|
作者
Bukac, Martina [1 ]
Muha, Boris [2 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
基金
美国国家科学基金会;
关键词
fluid-structure interaction; error estimates; convergence rates; noniterative scheme; STABLE PARTITIONED ALGORITHM; INCOMPRESSIBLE-FLOW; MASS; HEMODYNAMICS; SOLVERS;
D O I
10.1137/16M1055396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze the stability and convergence properties of a loosely-coupled scheme, called the kinematically coupled scheme, and its extensions for the interaction between an incompressible, viscous fluid and a thin, elastic structure. We consider a benchmark problem where the structure is modeled using a general thin structure model, and the coupling between the fluid and structure is linear. We derive the energy estimates associated with the unconditional stability of an extension of the kinematically coupled scheme, called the beta-scheme. Furthermore, for the first time we present a priori estimates showing optimal, first-order in time convergence in the case where beta-1. We further discuss the extensions of our results to other fluid-structure interaction problems, in particular the fluid-thick structure interaction problem. The theoretical stability and convergence results are supported with numerical examples.
引用
下载
收藏
页码:3032 / 3061
页数:30
相关论文
共 50 条
  • [1] STABILITY OF THE KINEMATICALLY COUPLED β-SCHEME FOR FLUID-STRUCTURE INTERACTION PROBLEMS IN HEMODYNAMICS
    Canic, Suncica
    Muha, Boris
    Bukac, Martina
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) : 54 - 80
  • [2] A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow
    Guidoboni, Giovanna
    Glowinski, Roland
    Cavallini, Nicola
    Canic, Suncica
    Lapin, Sergey
    APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 684 - 688
  • [3] On the stability of a loosely-coupled scheme based on a Robin interface condition for fluid-structure interaction
    Gigante, Giacomo
    Vergara, Christian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 96 : 109 - 119
  • [4] Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme
    Doerfel, Michael R.
    Simeon, Bernd
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 307 - 315
  • [5] Fully discrete loosely coupled Robin-Robin scheme for incompressible fluid-structure interaction: stability and error analysis
    Burman, Erik
    Durst, Rebecca
    Fernandez, Miguel A.
    Guzman, Johnny
    NUMERISCHE MATHEMATIK, 2022, 151 (04) : 807 - 840
  • [6] A modal method for coupled fluid-structure interaction analysis
    Li, S
    Zhao, DY
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2004, 12 (02) : 217 - 231
  • [7] Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems
    Astorino, M.
    Grandmont, C.
    NUMERISCHE MATHEMATIK, 2010, 116 (04) : 721 - 767
  • [8] On the temporal stability and accuracy of coupled problems with reference to fluid-structure interaction
    Joosten, M. M.
    Dettmer, W. G.
    Peric, D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (10-12) : 1363 - 1378
  • [9] Convergence Analysis of an Unfitted Mesh Semi-implicit Coupling Scheme for Incompressible Fluid-Structure Interaction
    Erik Burman
    Miguel A. Fernández
    Fannie M. Gerosa
    Vietnam Journal of Mathematics, 2023, 51 : 37 - 69
  • [10] Convergence Analysis of an Unfitted Mesh Semi-implicit Coupling Scheme for Incompressible Fluid-Structure Interaction
    Burman, Erik
    Fernandez, Miguel A.
    Gerosa, Fannie M.
    VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (01) : 37 - 69