Noisy In-Memory Recursive Computation with Memristor Crossbars

被引:0
|
作者
Dupraz, Elsa [1 ]
Varshney, Lav R. [2 ]
机构
[1] UBL, IMT Atlantique, Lab STICC, Brest, France
[2] Univ Illinois, Champaign, IL USA
关键词
D O I
10.1109/isit44484.2020.9174364
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers iterative dot-product computation implemented on in-memory memristor crossbar substrates. To address the case where true memristor conductance values may differ from their target values, it introduces a theoretical framework that characterizes the effect of conductance value variations on the final computation. For simple dot-products, the final computation error can be approximated by a Gaussian distribution; the mean and variance values of the corresponding Gaussian distribution are provided. For iterative dot-product computation, recursive expressions are derived for the means and variances of the successive computation outputs. Experiments verify the accuracy of the proposed analysis on both synthetic data and on images processed with memristor-based principal component analysis.
引用
收藏
页码:804 / 809
页数:6
相关论文
共 50 条
  • [31] Stochastic Computing for Reliable Memristive In-Memory Computation
    Alam, Mohsen Riahi
    Najafi, M. Hassan
    TaheriNejad, Nima
    Imani, Mohsen
    Peng, Lu
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 397 - 401
  • [32] In-Memory Hamming Similarity Computation in Resistive Arrays
    Cassuto, Yuval
    Crammer, Koby
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 819 - 823
  • [33] MapReuse : Reusing Computation in an In-Memory MapReduce System
    Tiwari, Devesh
    Solihin, Yan
    2014 IEEE 28TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2014,
  • [34] Addressing Resiliency of In-Memory Floating Point Computation
    Ensan, Sina Sayyah
    Ghosh, Swaroop
    Motaman, Seyedhamidreza
    Weast, Derek
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (09) : 1172 - 1183
  • [35] In-memory Distributed Matrix Computation Processing and Optimization
    Yu, Yongyang
    Tang, Mingjie
    Aref, Walid G.
    Malluhi, Qutaibah M.
    Abbas, Mostafa M.
    Ouzzani, Mourad
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1047 - 1058
  • [36] In-Memory Eigenvector Computation in Time O(1)
    Sun, Zhong
    Pedretti, Giacomo
    Ambrosi, Elia
    Bricalli, Alessandro
    Ielmini, Daniele
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (08)
  • [37] Structured Pruning of RRAM Crossbars for Efficient In-Memory Computing Acceleration of Deep Neural Networks
    Meng, Jian
    Yang, Li
    Peng, Xiaochen
    Yu, Shimeng
    Fan, Deliang
    Seo, Jae-Sun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) : 1576 - 1580
  • [38] ReSG: A Data Structure for Verification of Majority-based In-memory Computing on ReRAM Crossbars
    Bhunia, Kousik
    Deb, Arighna
    Datta, Kamalika
    Hassan, Muhammad
    Shirinzadeh, Saeideh
    Drechsler, Rolf
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2024, 23 (06) : 33 - 33
  • [39] Programming of memristor crossbars by using genetic algorithm
    Merrikh-Bayat, Farnood
    Shouraki, Saeed Bagheri
    WORLD CONFERENCE ON INFORMATION TECHNOLOGY (WCIT-2010), 2011, 3
  • [40] Pilot assisted readout for passive memristor crossbars
    Naous, Rawan
    Zidan, Mohammad Affan
    Sultan, Ahmed
    Salama, Khaled Nabil
    MICROELECTRONICS JOURNAL, 2016, 54 : 48 - 58