Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条