A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations

被引:23
|
作者
Morrell, J. M.
Sweby, P. K.
Barlow, A.
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
[2] AWE, Aldermaston, England
基金
英国自然环境研究理事会;
关键词
ALE; mesh refinement;
D O I
10.1016/j.jcp.2007.05.040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is' employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster. Crown Copyright (C) 2007 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1152 / 1180
页数:29
相关论文
共 50 条
  • [21] Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
    Ghaffar, Tayabia
    Yousaf, Muhammad
    Qamar, Shamsul
    RESULTS IN PHYSICS, 2018, 9 : 1161 - 1169
  • [22] A cell-centered adaptive projection method for the incompressible Euler equations
    Martin, DF
    Colella, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (02) : 271 - 312
  • [23] Stability of Newton TVD Runge-Kutta scheme for one-dimensional Euler equations with adaptive mesh
    Yuan, Xinpeng
    Ning, Jianguo
    Ma, Tianbao
    Wang, Cheng
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 282 : 1 - 16
  • [24] A numerical scheme for a weakly coupled system of singularly perturbed delay differential equations on an adaptive mesh
    Podila, Pramod Chakravarthy
    Gupta, Trun
    Vigo-Aguiar, J.
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (03)
  • [25] A cell-centred pressure-correction scheme for the compressible Euler equations
    Herbin R.
    Latché J.-C.
    Zaza C.
    IMA Journal of Numerical Analysis, 2021, 40 (03) : 1792 - 1837
  • [26] Two-dimensional anisotropic Cartesian mesh adaptation for the compressible Euler equations
    Keats, WA
    Lien, FS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 46 (11) : 1099 - 1125
  • [27] A cell-centred pressure-correction scheme for the compressible Euler equations
    Herbin, Raphaele
    Latche, Jean-Claude
    Zaza, Chady
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 1792 - 1837
  • [28] NUMERICAL-SOLUTION OF STEADY AND UNSTEADY EULER EQUATIONS
    FORT, J
    KOZEL, K
    VAVRINCOVA, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (06): : T595 - T599
  • [29] ON THE NUMERICAL-SOLUTION OF EULER-LAGRANGE EQUATIONS
    POTRA, FA
    RHEINBOLDT, WC
    MECHANICS OF STRUCTURES AND MACHINES, 1991, 19 (01): : 1 - 18
  • [30] ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS
    RABIER, PJ
    RHEINBOLDT, WC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 318 - 329