A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations

被引:23
|
作者
Morrell, J. M.
Sweby, P. K.
Barlow, A.
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
[2] AWE, Aldermaston, England
基金
英国自然环境研究理事会;
关键词
ALE; mesh refinement;
D O I
10.1016/j.jcp.2007.05.040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is' employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster. Crown Copyright (C) 2007 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1152 / 1180
页数:29
相关论文
共 50 条
  • [11] Numerical solution of the Euler equations for axisymmetric flow
    Mazaheri, K
    Abbasian, A
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1998, 22 (01): : 17 - 31
  • [12] Uncertainty of solution in Euler equations and numerical instability
    Kim, KH
    Kim, C
    Rho, OH
    Lee, KT
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 146 - 152
  • [13] Numerical methods on adaptive hybrid grids for the solution of Euler and Navier-Stokes equations
    Lefebvre, M
    Couaillier, V
    Duboué, JM
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 451 - 456
  • [14] Adaptive mesh refinement for singular solutions of the incompressible Euler equations
    Grauer, R
    Marliani, C
    Germaschewski, K
    PHYSICAL REVIEW LETTERS, 1998, 80 (19) : 4177 - 4180
  • [15] AN ADAPTIVE CARTESIAN MESH ALGORITHM FOR THE EULER EQUATIONS IN ARBITRARY GEOMETRIES
    BERGER, MJ
    LEVEQUE, RJ
    AIAA 9TH COMPUTATIONAL FLUID DYNAMICS CONFERENCE: A COLLECTION OF TECHNICAL PAPERS, 1989, : 1 - 7
  • [16] Numerical Experiments with the Multiresolution Scheme for the Compressible Euler Equations
    Sjoegreen, B.
    Journal of Physics A: Mathematical and General, 1994, 277 (22):
  • [17] NUMERICAL EXPERIMENTS WITH THE MULTIRESOLUTION SCHEME FOR THE COMPRESSIBLE EULER EQUATIONS
    SJOGREEN, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (02) : 251 - 261
  • [18] A NEW NUMERICAL SCHEME FOR SOLVING THE COMPRESSIBLE EULER EQUATIONS
    DEVUYST, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (07): : 577 - 582
  • [19] A Direct ALE Multi-Moment Finite Volume Scheme for the Compressible Euler Equations
    Jin, Peng
    Deng, Xi
    Xiao, Feng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (05) : 1300 - 1325
  • [20] NUMERICAL EXPERIMENTS WITH THE OSHER UPWIND SCHEME FOR THE EULER EQUATIONS
    CHAKRAVARTHY, SR
    OSHER, S
    AIAA JOURNAL, 1983, 21 (09) : 1241 - 1248