Coupled thermoviscoelastodynamic Green's functions for bi-material half-space

被引:16
|
作者
Naeeni, M. Raoofian [1 ]
Eskandari-Ghadi, M. [2 ]
Ardalan, A. A. [1 ]
Pak, R. Y. S. [3 ]
Rahimian, M. [2 ]
Hayati, Y. [2 ]
机构
[1] Univ Tehran, Coll Engn, Ctr Excellence Geomat Engn & Disaster Prevent, Dept Surveying & Geomat Engn, Tehran 111554563, Iran
[2] Univ Tehran, Coll Engn, Sch Civil Engn, Tehran 111554563, Iran
[3] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
关键词
Coupled thermoelasticity; bi-material half-space; transversely isotropic; potential function; Hankel integral transforms; thermoviscoelasticity; DEFORMATION; DISPLACEMENT; INTEGRATION; STRESSES;
D O I
10.1002/zamm.201200135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By virtue of the representations of displacements, stresses, and temperature fields in terms of two scalar potential functions and the use of correspondence principle, an analytical derivation of fundamental Green's functions for bi-material half-space composed of a transversely isotropic thermo-elastic layer and an isotropic thermo-visco-elastic half-space affected by finite surface or interfacial sources is presented. With the aid of the potential function relationships, the coupled equations of motion and energy equation in both the half-space and the layer are uncoupled and solved with the aid of Fourier series and Hankel integral transforms. Responses of the medium are derived in the form of improper line integrals related to Hankel inversion transforms. To show the effects of anisotropy and viscoelasticity on the propagation of coupled thermoviscoelastic waves, the derived integrals for displacements, stresses, and temperature Green's functions are evaluated by a numerical scheme. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:260 / 282
页数:23
相关论文
共 50 条
  • [21] Dynamic Green's Functions for an Anisotropic Multilayered Poroelastic Half-Space
    Wang, Fang
    Ding, Tao
    Han, Xueli
    Lv, Lei
    TRANSPORT IN POROUS MEDIA, 2020, 133 (02) : 293 - 312
  • [22] Green's functions of an exponentially graded transversely isotropic half-space
    Eskandari, M.
    Shodja, H. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (11-12) : 1537 - 1545
  • [23] Elastostatic Green's functions for an arbitrary internal load in a transversely isotropic bi-material full-space
    Eskandari-Ghadi, Morteza
    Pak, Ronald Y. S.
    Ardeshir-Behrestaghi, Azizollah
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2009, 47 (04) : 631 - 641
  • [24] SCATTERING OF SH-WAVE BY A CIRCULAR INCLUSION NEAR THE INTERFACIAL CRACKS IN THE PIEZOELECTRIC BI-MATERIAL HALF-SPACE
    Qi, H.
    Zhang, X. M.
    JOURNAL OF MECHANICS, 2018, 34 (03) : 337 - 347
  • [25] Scattering of SH-wave by interface crack and neighbouring circular cavity in bi-material vertical half-space
    Nan, Jing-Fu
    Qi, Hui
    She, Yong
    Gongcheng Lixue/Engineering Mechanics, 2009, 26 (05): : 245 - 250
  • [26] Green functions for an incompressible linearly nonhomogeneous half-space
    Muravskii, G.
    1996, Springer-Verlag GmbH & Company KG, Berlin, Germany (67) : 1 - 2
  • [27] Green functions for an incompressible linearly nonhomogeneous half-space
    Muravskii, G
    ARCHIVE OF APPLIED MECHANICS, 1996, 67 (1-2) : 81 - 95
  • [28] Green's functions for infinite bi-material planes of cubic quasicrystals with imperfect interface
    Gao, Yang
    Ricoeur, Andreas
    PHYSICS LETTERS A, 2010, 374 (42) : 4354 - 4358
  • [29] Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect
    Zhang, Liangliang
    Wu, Di
    Xu, Wenshuai
    Yang, Lianzhi
    Ricoeur, Andreas
    Wang, Zhibin
    Gao, Yang
    PHYSICS LETTERS A, 2016, 380 (39) : 3222 - 3228
  • [30] Surface Green's functions for an incompressible, transversely isotropic elastic half-space
    Chadwick, RS
    Shoelson, B
    Cai, HX
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) : 1186 - 1197