Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

被引:44
|
作者
Zhang, Liangliang [2 ,3 ]
Wu, Di [2 ]
Xu, Wenshuai [1 ]
Yang, Lianzhi [4 ]
Ricoeur, Andreas [5 ]
Wang, Zhibin [5 ]
Gao, Yang [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[3] Sinomatech Wind Power Blade Co Ltd, Beijing 100092, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Civil & Environm Engn, Beijing 100083, Peoples R China
[5] Univ Kassel, Inst Mech, D-34125 Kassel, Germany
基金
中国国家自然科学基金;
关键词
Piezoelectricity; One-dimensional quasicrystals; Stroh formalism; Green's function; Bi-material; FUNDAMENTAL-SOLUTIONS; ANTIPLANE ANALYSIS; GENERAL-SOLUTIONS; CRACKS; ELASTICITY;
D O I
10.1016/j.physleta.2016.07.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite,plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-Material are obtained.. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3222 / 3228
页数:7
相关论文
共 50 条
  • [1] A novel isogeometric analysis enriched element for a V-notched one-dimensional hexagonal piezoelectric quasicrystal bi-material
    Yang, Zhenting
    Yu, Xiong
    Tong, Zhenzhen
    Xu, Chenghui
    Zhou, Zhenhuan
    Xu, Xinsheng
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 115
  • [2] Fundamental solutions and analysis of an interfacial crack in a one-dimensional hexagonal quasicrystal bi-material
    Fan, CuiYing
    Chen, Shuai
    Zhang, QiaoYun
    Zhao, Ming Hao
    Wang, Bing Bing
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (05) : 1124 - 1139
  • [3] Thermo-elastic Green's functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals
    Li, P. D.
    Li, X. Y.
    Zheng, R. F.
    [J]. PHYSICS LETTERS A, 2013, 377 (08) : 637 - 642
  • [4] Partially debonded circular inclusion in one-dimensional quasicrystal material with piezoelectric effect
    Hu, K. Q.
    Meguid, S. A.
    Zhong, Z.
    Gao, C-F
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2020, 16 (04) : 749 - 766
  • [5] Partially debonded circular inclusion in one-dimensional quasicrystal material with piezoelectric effect
    K. Q. Hu
    S. A. Meguid
    Z. Zhong
    C. -F. Gao
    [J]. International Journal of Mechanics and Materials in Design, 2020, 16 : 749 - 766
  • [6] A One-dimensional Ubiquitiformal Constitutive Model for a Bi-material Rod
    Yang, Min
    Ou, Zhuo-cheng
    Duan, Zhuo-ping
    Huang, Feng-lei
    [J]. INTERNATIONAL SYMPOSIUM ON MATERIALS APPLICATION AND ENGINEERING (SMAE 2016), 2016, 67
  • [7] FUNDAMENTAL SOLUTIONS OF PLANE PROBLEM OF ONE-DIMENSIONAL QUASICRYSTAL WITH PIEZOELECTRIC EFFECT
    Wu, Di
    Zhang, Liang-liang
    Xu, Wen-shuai
    Gao, Yang
    [J]. PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 285 - 289
  • [8] Analysis of an interfacial crack in a piezoelectric bi-material via the extended Green's functions and displacement discontinuity method
    Zhao, YanFei
    Zhao, MingHao
    Pan, Ernian
    Fan, CuiYing
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (06) : 1456 - 1463
  • [9] Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect
    Li, X. Y.
    Li, P. D.
    Wu, T. H.
    Shi, M. X.
    Zhu, Z. W.
    [J]. PHYSICS LETTERS A, 2014, 378 (10) : 826 - 834
  • [10] Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect
    Sun, Tuoya
    Guo, Junhong
    Zhan, Xiaoyan
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (03) : 335 - 352