Stochastic modeling and control of bioreactors

被引:7
|
作者
Fontbona, J. [1 ,2 ]
Ramirez, H. C. [1 ,2 ]
Riquelme, V. [1 ,2 ]
Silva, F. J. [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851,Casilla 170-3, Santiago 3, Chile
[2] Univ Chile, CNRS, Ctr Modelamiento Matemat, UMI 2807, Beauchef 851,Casilla 170-3, Santiago 3, Chile
[3] Univ Limoges, Fac Sci & Tech, UMR CNRS 7252, Inst Rech XLIM DMI, F-87060 Limoges, France
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Chemostat; SBR; demographic stochasticity; Stochastic Control; Dynamic Programming Principle; EXTREMUM-SEEKING CONTROL; ACTIVATED-SLUDGE PROCESS; WASTE-WATER TREATMENT; BATCH FERMENTATION; TIME CONTROL; BIOREMEDIATION; BIOPROCESSES; CHEMOSTAT;
D O I
10.1016/j.ifacol.2017.08.2203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a stochastic model for a sequencing-batch reactor (SBR) and for a chemostat. Both models are described by systems of Stochastic Differential Equations (SDEs), which are obtained as limits of suitable Markov Processes characterizing the microscopic behavior. We study the existence of solutions of the obtained equations as well as some properties, among which the possible extinction of the biomass is the most remarkable feature. The implications of this behavior are illustrated in the problem consisting in maximizing the probability of reaching a desired depollution level prior to biomass extinction. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12611 / 12616
页数:6
相关论文
共 50 条
  • [41] Intelligent adaptive control of bioreactors
    Babuska, R
    Damen, MR
    Hellinga, C
    Maarleveld, H
    JOURNAL OF INTELLIGENT MANUFACTURING, 2003, 14 (02) : 255 - 265
  • [42] Robust control of unstable bioreactors
    Jacob, EF
    Chidambaram, M
    PROCESS CONTROL AND QUALITY, 1996, 8 (04): : 147 - 157
  • [43] Environmental Control in Flow Bioreactors
    Giusti, Serena
    Mazzei, Daniele
    Cacopardo, Ludovica
    Mattei, Giorgio
    Domenici, Claudio
    Ahluwalia, Arti
    PROCESSES, 2017, 5 (02):
  • [44] Modeling and Control Using Stochastic Distribution Control Theory for Intersection Traffic Flow
    Wang, Hong
    Patil, Sagar, V
    Aziz, H. M. Abdul
    Young, Stanley
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 1885 - 1898
  • [45] Efficient and Simple Gaussian Process Supported Stochastic Model Predictive Control for Bioreactors using HILO-MPC
    Morabito, Bruno
    Pohlodek, Johannes
    Kranert, Lena
    Espinel-Rios, Sebastian
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2022, 55 (07): : 922 - 927
  • [46] Modeling and Optimization of Membrane Bioreactors and Moving Bed Biofilm Reactor-Membrane Bioreactors
    Carlos Leyva-Diaz, Juan
    Manuel Poyatos, Jose
    CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (09) : 1726 - 1735
  • [47] Wavelet Modeling of Control Stochastic Systems at Complex Shock Disturbances
    Sinitsyn, Igor
    Sinitsyn, Vladimir
    Korepanov, Eduard
    Konashenkova, Tatyana
    MATHEMATICS, 2021, 9 (20)
  • [48] Editorial: Advances in Stochastic System Modeling, Control, Optimization, and Their Applications
    Zhang, Qichun
    Shu, Zhan
    ELECTRONICS, 2022, 11 (24)
  • [49] Stochastic modeling for automated material handling system design and control
    Johnson, ME
    Brandeau, ML
    TRANSPORTATION SCIENCE, 1996, 30 (04) : 330 - 350
  • [50] Modeling and adaptive tracking for a class of stochastic Lagrangian control systems
    Cui, Ming-Yue
    Wu, Zhao-Jing
    Xie, Xue-Jun
    Shi, Peng
    AUTOMATICA, 2013, 49 (03) : 770 - 779