Stochastic modeling and control of bioreactors

被引:7
|
作者
Fontbona, J. [1 ,2 ]
Ramirez, H. C. [1 ,2 ]
Riquelme, V. [1 ,2 ]
Silva, F. J. [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851,Casilla 170-3, Santiago 3, Chile
[2] Univ Chile, CNRS, Ctr Modelamiento Matemat, UMI 2807, Beauchef 851,Casilla 170-3, Santiago 3, Chile
[3] Univ Limoges, Fac Sci & Tech, UMR CNRS 7252, Inst Rech XLIM DMI, F-87060 Limoges, France
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Chemostat; SBR; demographic stochasticity; Stochastic Control; Dynamic Programming Principle; EXTREMUM-SEEKING CONTROL; ACTIVATED-SLUDGE PROCESS; WASTE-WATER TREATMENT; BATCH FERMENTATION; TIME CONTROL; BIOREMEDIATION; BIOPROCESSES; CHEMOSTAT;
D O I
10.1016/j.ifacol.2017.08.2203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a stochastic model for a sequencing-batch reactor (SBR) and for a chemostat. Both models are described by systems of Stochastic Differential Equations (SDEs), which are obtained as limits of suitable Markov Processes characterizing the microscopic behavior. We study the existence of solutions of the obtained equations as well as some properties, among which the possible extinction of the biomass is the most remarkable feature. The implications of this behavior are illustrated in the problem consisting in maximizing the probability of reaching a desired depollution level prior to biomass extinction. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12611 / 12616
页数:6
相关论文
共 50 条
  • [31] Compartmental modeling and adaptive control of stochastic nonnegative systems
    Hayakawa, Tomohisa
    POSITIVE SYSTEMS, PROCEEDINGS, 2006, 341 : 351 - 358
  • [32] Prediction and control of number of cells in microdroplets by stochastic modeling
    Ceyhan, Elvan
    Xu, Feng
    Gurkan, Umut Atakan
    Emre, Almet Emrehan
    Turali, Emine Sumeyra
    El Assal, Rami
    Acikgenc, Ali
    Wu, Chung-an Max
    Demirci, Utkan
    LAB ON A CHIP, 2012, 12 (22) : 4884 - 4893
  • [33] Efficient Stochastic Wake Modeling for Wind Farm Control
    Taylor, Tim
    Johnson, Kathryn
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [34] THE DRILLING PROBLEM - A STOCHASTIC MODELING AND CONTROL EXAMPLE IN MANUFACTURING
    CONRAD, CJ
    MCCLAMROCH, NH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (11) : 947 - 958
  • [35] Modeling and control for inventory with stochastic supply disruptions and returns
    School of Control Science and Engineering, Shandong University, Jinan
    250061, China
    Zidonghua Xuebao Acta Auto. Sin., 11 (2436-2444):
  • [36] MODELING BIOGAS PRODUCTION IN BUBBLING BIOREACTORS
    Kushchev, L. A.
    Okuneva, G. L.
    Suslov, D. Yu.
    Graving, A. A.
    CHEMICAL AND PETROLEUM ENGINEERING, 2012, 47 (9-10) : 613 - 618
  • [37] Modeling of Cell Cultures in Perfusion Bioreactors
    Yan, X.
    Bergstrom, D. J.
    Chen, X. B.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) : 2568 - 2575
  • [38] Intelligent adaptive control of bioreactors
    R. Babuška
    M. R. Damen
    C. Hellinga
    H. Maarleveld
    Journal of Intelligent Manufacturing, 2003, 14 : 255 - 265
  • [39] Modeling bioaugmentation with nitrifiers in membrane bioreactors
    Mannucci, Alberto
    Munz, Giulio
    Mori, Gualtiero
    Makinia, Jacek
    Lubello, Claudio
    Oleszkiewicz, Jan A.
    WATER SCIENCE AND TECHNOLOGY, 2015, 71 (01) : 53 - 59
  • [40] CONTROL IN BIOREACTORS SHOWING GRADIENTS
    WEIJERS, SR
    HONDERD, G
    LUYBEN, KCAM
    BIOPROCESS ENGINEERING, 1990, 5 (05): : 225 - 230