Finite rank perturbations and distribution theory

被引:13
|
作者
Albeverio, S [1 ]
Kurasov, P
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Ruhr Univ Bochum, Dept Math, D-44780 Bochum, Germany
[3] St Petersburg State Univ, Dept Math & Computat Phys, St Petersburg 198904, Russia
[4] Univ Lulea, Dept Math, S-97187 Lulea, Sweden
关键词
D O I
10.1090/S0002-9939-99-04992-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Perturbations A(T) of a selfadjoint operator A by symmetric finite rank operators T from H-2(A) to H-2(A) are studied. The finite dimensional family of selfadjoint extensions determined by A(T) is given explicitly.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 50 条
  • [21] Finite rank perturbations of Toeplitz products on the Bergman space
    Le, Trieu
    Thilakarathna, Damith
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [22] On Domains of Powers of Linear Operators and Finite Rank Perturbations
    Azizov, Tomas Ya.
    Behrndt, Jussi
    Philipp, Friedrich
    Trunk, Carsten
    SPECTRAL THEORY IN INNER PRODUCT SPACES AND APPLICATIONS, 2009, 188 : 31 - +
  • [23] SPECTRAL DISSECTION OF FINITE RANK PERTURBATIONS OF NORMAL OPERATORS
    Putinar, Mihai
    Yakubovich, Dmitry
    JOURNAL OF OPERATOR THEORY, 2021, 85 (01) : 45 - 78
  • [24] Dispersive estimates for the Schrodinger equation with finite rank perturbations
    Cheng, Han
    Huang, Shanlin
    Zheng, Quan
    ADVANCES IN MATHEMATICS, 2023, 426
  • [25] FINITE RANK PERTURBATIONS AND SOLUTIONS TO THE OPERATOR RICCATI EQUATION
    Grossmann, Julian P.
    OPERATORS AND MATRICES, 2016, 10 (02): : 435 - 451
  • [26] Singular perturbations of finite rank. Point spectrum
    V. D. Koshmanenko
    O. V. Samoilenko
    Ukrainian Mathematical Journal, 1997, 49 (9) : 1335 - 1344
  • [27] Finite Rank Perturbations, Scattering Matrices and Inverse Problems
    Behrndt, Jussi
    Malamud, Mark M.
    Neidhardt, Hagen
    RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES, 2010, 198 : 61 - +
  • [28] Finite-rank perturbations of positive operators and isometries
    Choi, MD
    Wu, PY
    STUDIA MATHEMATICA, 2006, 173 (01) : 73 - 79
  • [29] GENERAL CLARK MODEL FOR FINITE-RANK PERTURBATIONS
    Liaw, Constanze
    Treil, Sergei
    ANALYSIS & PDE, 2019, 12 (02): : 449 - 492
  • [30] Finite Rank Perturbations of Linear Relations and Matrix Pencils
    Leben, Leslie
    Martinez Peria, Francisco
    Philipp, Friedrich
    Trunk, Carsten
    Winkler, Henrik
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)