SPECTRAL DISSECTION OF FINITE RANK PERTURBATIONS OF NORMAL OPERATORS

被引:4
|
作者
Putinar, Mihai [1 ,2 ]
Yakubovich, Dmitry [3 ,4 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Newcastle Univ, Newcastle Upon Tyne, Tyne & Wear, England
[3] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[4] CSIC UAM UC3M UCM, ICMAT, Canto Blanco 28049, Spain
关键词
Normal operator; perturbation determinant; Cauchy transform; decomposable operator; functional model; Bishop's property (beta); ONE-DIMENSIONAL PERTURBATIONS; COMPACT PERTURBATIONS; ADJOINT OPERATORS; COMPLETENESS; SUBSPACES;
D O I
10.7900/jot.2019jul21.2266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite rank perturbations T = N + K of a bounded normal operator N acting on a separable Hilbert space are studied thanks to a natural functional model of T; in its turn the functional model solely relies on a perturbation matrix/characteristic function previously defined by the second author. Function theoretic features of this perturbation matrix encode in a closed-form the spectral behavior of T. Under mild geometric conditions on the spectral measure of N and some smoothness constraints on K we show that the operator T admits invariant subspaces, or even it is decomposable.
引用
收藏
页码:45 / 78
页数:34
相关论文
共 50 条
  • [1] Finite rank perturbations of normal operators: Spectral idempotents and decomposability
    Gallardo-Gutierrez, Eva A.
    Gonzalez-Dona, F. Javier
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (12)
  • [2] Finite rank perturbations of normal operators: Spectral subspaces and Borel series
    Gallardo-Gutierrez, Eva A.
    Gonzalez-Dona, F. Javier
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 162 : 23 - 75
  • [3] HYPONORMALITY OF FINITE RANK PERTURBATIONS OF NORMAL OPERATORS
    Jung, Il Bong
    Lee, Eun Young
    Seo, Minjung
    OPERATORS AND MATRICES, 2018, 12 (03): : 779 - 785
  • [4] SPECTRAL THEORY OF RANK ONE PERTURBATIONS OF NORMAL COMPACT OPERATORS
    Baranov, A. D.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (05) : 761 - 802
  • [5] Spectral decomposability of rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 602 - 609
  • [6] On finite rank perturbations of definitizable operators
    Azizov, Tomas Ya.
    Behmdt, Jussi
    Trunk, Carsten
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1161 - 1168
  • [7] Finite Rank Perturbations of Toeplitz Operators
    Željko Čučković
    Integral Equations and Operator Theory, 2007, 59 : 345 - 353
  • [8] Finite rank perturbations of toeplitz operators
    Cuckovic, Zeljko
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (03) : 345 - 353
  • [9] On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps
    Jussi Behrndt
    Roland Möws
    Carsten Trunk
    Complex Analysis and Operator Theory, 2014, 8 : 925 - 936
  • [10] On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps
    Behrndt, Jussi
    Moews, Roland
    Trunk, Carsten
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (04) : 925 - 936