Resonances for Hamiltonians with a delta perturbation in one dimension

被引:7
|
作者
Fernández, C
Palma, G
Prado, H
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago 6904441, Chile
[2] Univ Santiago Chile, Dept Fis, Santiago, Chile
[3] Univ Santiago Chile, Dept Matemat, Santiago, Chile
来源
关键词
D O I
10.1088/0305-4470/38/34/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the existence of almost exponentially decaying states associated with quasi-stationary states of the Hamiltonian H omega = -(dx2)/(d2) + omega delta(a) defined on L-2 (R+), where delta(a) is the repulsive delta potential. We use Krein's fon-nula to study the time evolution of the system defined by H,,,. In this paper we find that the quasi-stationary states in the infinite limit omega -> infinity, decay almost exponentially; this fact can be explained physically due to the existence of resonances.
引用
收藏
页码:7509 / 7518
页数:10
相关论文
共 50 条