Resonances for Hamiltonians with a delta perturbation in one dimension

被引:7
|
作者
Fernández, C
Palma, G
Prado, H
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago 6904441, Chile
[2] Univ Santiago Chile, Dept Fis, Santiago, Chile
[3] Univ Santiago Chile, Dept Matemat, Santiago, Chile
来源
关键词
D O I
10.1088/0305-4470/38/34/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the existence of almost exponentially decaying states associated with quasi-stationary states of the Hamiltonian H omega = -(dx2)/(d2) + omega delta(a) defined on L-2 (R+), where delta(a) is the repulsive delta potential. We use Krein's fon-nula to study the time evolution of the system defined by H,,,. In this paper we find that the quasi-stationary states in the infinite limit omega -> infinity, decay almost exponentially; this fact can be explained physically due to the existence of resonances.
引用
收藏
页码:7509 / 7518
页数:10
相关论文
共 50 条
  • [21] Cluster perturbation theory for spin Hamiltonians
    A. S. Ovchinnikov
    I. G. Bostrem
    Vl. E. Sinitsyn
    Theoretical and Mathematical Physics, 2010, 162 : 179 - 187
  • [22] Self-adjoint Dirac type Hamiltonians in one space dimension with a mass jump
    Gonzalez-Diaz, L. A.
    Diaz, Alberto A.
    Diaz-Solorzano, S.
    Darias, J. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (04)
  • [23] Perturbation theory of PT symmetric Hamiltonians
    Caliceti, E.
    Cannata, F.
    Graffi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32): : 10019 - 10027
  • [24] Cluster perturbation theory for spin Hamiltonians
    Ovchinnikov, A. S.
    Bostrem, I. G.
    Sinitsyn, Vl. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 162 (02) : 179 - 187
  • [25] A perturbation theory of resonances
    Agmon, S
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1998, 51 (11-12) : 1255 - 1309
  • [26] RENORMALIZATION OF THE REALISTIC DELTA-POTENTIAL IN ONE-DIMENSION
    HUGHES, RJ
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (04) : 395 - 406
  • [27] COMMENTS ON THE SCHRODINGER-EQUATION WITH DELTA'-INTERACTION IN ONE DIMENSION
    ZHAO, BH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10): : L617 - L618
  • [28] Time dependent delta-prime interactions in dimension one
    Cacciapuoti, C.
    Mantile, A.
    Posilicano, A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2016, 7 (02): : 303 - 314
  • [30] The propagator of the attractive delta-Bose gas in one dimension
    Prolhac, Sylvain
    Spohn, Herbert
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)