Risk Stratification of COVID-19 Using Routine Laboratory Tests: A Machine Learning Approach

被引:4
|
作者
Mlambo, Farai [1 ]
Chironda, Cyril [1 ]
George, Jaya [2 ,3 ]
机构
[1] Univ Witwatersrand, Sch Stat & Actuarial Sci, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa
[2] Univ Witwatersrand, Dept Chem Pathol, 29 Princess Wales Terrace, ZA-2193 Johannesburg, South Africa
[3] Natl Hlth Lab Serv South Africa, 1 Modderfontein Rd, ZA-2131 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
COVID-19; machine learning; risk stratification; laboratory tests; STATISTICS; CLASSIFICATION; IMPUTATION; MODELS; HIV;
D O I
10.3390/idr14060090
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The COVID-19 pandemic placed significant stress on an already overburdened health system. The diagnosis was based on detection of a positive RT-PCR test, which may be delayed when there is peak demand for testing. Rapid risk stratification of high-risk patients allows for the prioritization of resources for patient care. The study aims were to classify patients as severe or not severe based on outcomes using machine learning on routine laboratory tests. Data were extracted for all individuals who had at least one SARS-CoV-2 PCR test conducted via the NHLS between the periods of 1 March 2020 to 7 July 2020. Exclusion criteria: those 18 years, and those with indeterminate PCR tests. Results for 15437 patients (3301 positive and 12,136 negative) were used to fit six machine learning models, namely the logistic regression (LR) (the base model), decision trees (DT), random forest (RF), extreme gradient boosting (XGB), convolutional neural network (CNN) and self-normalising neural network (SNN). Model development was carried out by splitting the data into training and testing set of a ratio 70:30, together with a 10-fold cross-validation re-sampling technique. For risk stratification, admission to high care or ICU was the outcome for severe disease. Performance of the models varied: sensitivity was best for RF at 75% and accuracy of 75% for CNN. The area under the curve ranged from 57% for CNN to 75% for RF. RF and SNN were the best-performing models. Machine Learning (ML) can be incorporated into the laboratory information system and offers promise for early identification and risk stratification of COVID-19 patients, particularly in areas of resource-poor settings.
引用
收藏
页码:900 / 931
页数:32
相关论文
共 50 条
  • [31] Effect of increased number of COVID-19 tests using supervised machine learning models
    Pooja, W.
    Snehal, N.
    Sonam, K.
    Wagh, S. R.
    Singh, N. M.
    [J]. 2021 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2021, : 131 - 136
  • [32] Machine Learning Algorithms are Superior to Conventional Regression Models in Predicting Risk Stratification of COVID-19 Patients
    Ye, Jiru
    Hua, Meng
    Zhu, Feng
    [J]. RISK MANAGEMENT AND HEALTHCARE POLICY, 2021, 14 : 3159 - 3166
  • [33] Predictive modeling for COVID-19 readmission risk using machine learning algorithms
    Mostafa Shanbehzadeh
    Azita Yazdani
    Mohsen Shafiee
    Hadi Kazemi-Arpanahi
    [J]. BMC Medical Informatics and Decision Making, 22
  • [34] Predictive modeling for COVID-19 readmission risk using machine learning algorithms
    Shanbehzadeh, Mostafa
    Yazdani, Azita
    Shafiee, Mohsen
    Kazemi-Arpanahi, Hadi
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [35] Identification of high-risk COVID-19 patients using machine learning
    Quiroz-Juarez, Mario A.
    Torres-Gomez, Armando
    Hoyo-Ulloa, Irma
    Leon-Montiel, Roberto de J.
    U'Ren, Alfred B.
    [J]. PLOS ONE, 2021, 16 (09):
  • [36] Prediction of COVID-19 Risk in Public Areas Using IoT and Machine Learning
    Elbasi, Ersin
    Topcu, Ahmet E.
    Mathew, Shinu
    [J]. ELECTRONICS, 2021, 10 (14)
  • [37] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Lucas M. Fleuren
    Tariq A. Dam
    Michele Tonutti
    Daan P. de Bruin
    Robbert C. A. Lalisang
    Diederik Gommers
    Olaf L. Cremer
    Rob J. Bosman
    Sander Rigter
    Evert-Jan Wils
    Tim Frenzel
    Dave A. Dongelmans
    Remko de Jong
    Marco Peters
    Marlijn J. A. Kamps
    Dharmanand Ramnarain
    Ralph Nowitzky
    Fleur G. C. A. Nooteboom
    Wouter de Ruijter
    Louise C. Urlings-Strop
    Ellen G. M. Smit
    D. Jannet Mehagnoul-Schipper
    Tom Dormans
    Cornelis P. C. de Jager
    Stefaan H. A. Hendriks
    Sefanja Achterberg
    Evelien Oostdijk
    Auke C. Reidinga
    Barbara Festen-Spanjer
    Gert B. Brunnekreef
    Alexander D. Cornet
    Walter van den Tempel
    Age D. Boelens
    Peter Koetsier
    Judith Lens
    Harald J. Faber
    A. Karakus
    Robert Entjes
    Paul de Jong
    Thijs C. D. Rettig
    Sesmu Arbous
    Sebastiaan J. J. Vonk
    Mattia Fornasa
    Tomas Machado
    Taco Houwert
    Hidde Hovenkamp
    Roberto Noorduijn Londono
    Davide Quintarelli
    Martijn G. Scholtemeijer
    Aletta A. de Beer
    [J]. Critical Care, 25
  • [38] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Fleuren, Lucas M.
    Dam, Tariq A.
    Tonutti, Michele
    de Bruin, Daan P.
    Lalisang, Robbert C. A.
    Gommers, Diederik
    Cremer, Olaf L.
    Bosman, Rob J.
    Rigter, Sander
    Wils, Evert-Jan
    Frenzel, Tim
    Dongelmans, Dave A.
    de Jong, Remko
    Peters, Marco
    Kamps, Marlijn J. A.
    Ramnarain, Dharmanand
    Nowitzky, Ralph
    Nooteboom, Fleur G. C. A.
    de Ruijter, Wouter
    Urlings-Strop, Louise C.
    Smit, Ellen G. M.
    Mehagnoul-Schipper, D. Jannet
    Dormans, Tom
    de Jager, Cornelis P. C.
    Hendriks, Stefaan H. A.
    Achterberg, Sefanja
    Oostdijk, Evelien
    Reidinga, Auke C.
    Festen-Spanjer, Barbara
    Brunnekreef, Gert B.
    Cornet, Alexander D.
    van den Tempel, Walter
    Boelens, Age D.
    Koetsier, Peter
    Lens, Judith
    Faber, Harald J.
    Karakus, A.
    Entjes, Robert
    de Jong, Paul
    Rettig, Thijs C. D.
    Arbous, Sesmu
    Vonk, Sebastiaan J. J.
    Fornasa, Mattia
    Machado, Tomas
    Houwert, Taco
    Hovenkamp, Hidde
    Londono, Roberto Noorduijn
    Quintarelli, Davide
    Scholtemeijer, Martijn G.
    de Beer, Aletta A.
    [J]. CRITICAL CARE, 2021, 25 (01)
  • [39] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Rahi, Sahand
    Mansouri, Nahal
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [40] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Dastan, Farzaneh
    Daaee, Amir
    Badakhshan, Mohammadtaghi
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Safari, Saeid
    Bastanhagh, Ehsan
    Maher, Ali
    Babajani, Amirhesam
    Mehrazi, Maryam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Sendani, Mohammad Hassan
    Rahi, Sahand Jamal
    Mansouri, Nahal
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4