Convergence of the Peaceman-Rachford approximation for reaction-diffusion systems

被引:16
|
作者
Descombes, S
Ribot, M
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, UMPA, F-69364 Lyon 07, France
[2] Univ Lyon 1, CNRS, UMR 5585, MAPLY, F-69622 Villeurbanne, France
关键词
D O I
10.1007/s00211-002-0434-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a reaction-diffusion system of the form u(t)-MDeltau+F(u)=0, where M is a mxm matrix whose spectrum is included in {Rz>0}. We approximate it by the Peaceman-Rachford approximation defined by P(t)=(1+tF/2)(-1)(1+tMDelta/2)(1-tMDelta/2)(-1)(1-tF/2). We prove convergence of this scheme and show that it is of order two.
引用
收藏
页码:503 / 525
页数:23
相关论文
共 50 条
  • [21] Accelerated Stochastic Peaceman-Rachford Method for Empirical Risk Minimization
    Bai, Jian-Chao
    Bian, Feng-Miao
    Chang, Xiao-Kai
    Du, Lin
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (04) : 783 - 807
  • [22] A COMPUTER-ORIENTED DESCRIPTION OF THE PEACEMAN-RACHFORD ADI METHOD
    MURRAY, WA
    LYNN, MS
    COMPUTER JOURNAL, 1965, 8 (02): : 166 - 175
  • [23] Convergence of Peaceman-Rachford splitting method with Bregman distance for three-block nonconvex nonseparable optimization
    Zhao, Ying
    Lan, Heng-you
    Xu, Hai-yang
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [24] Analysis of a Peaceman-Rachford ADI scheme for Maxwell equations in heterogeneous media
    Zerulla, Konstantin
    Jahnke, Tobias
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [25] STABILITY ANALYSIS OF THE PEACEMAN-RACHFORD METHOD FOR PARABOLIC EQUATIONS WITH NONLOCAL CONDITIONS
    Sapagovas, Mifodijus
    Novickij, Jurij
    Ciupaila, Regimantas
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (44)
  • [26] Fiber Orientation Distribution Estimation Using a Peaceman-Rachford Splitting Method
    Chen, Yannan
    Dai, Yu-Hong
    Han, Deren
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (02): : 573 - 604
  • [27] A matched Peaceman-Rachford ADI method for solving parabolic interface problems
    Li, Chuan
    Zhao, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 299 : 28 - 44
  • [28] PEACEMAN-RACHFORD PROCEDURE AND DOMAIN DECOMPOSITION FOR FINITE-ELEMENT PROBLEMS
    LAYTON, WJ
    RABIER, PJ
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1995, 2 (04) : 363 - 393
  • [29] An indefinite proximal Peaceman-Rachford splitting method with substitution procedure for convex programming
    Deng, Zhao
    Liu, Sanyang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [30] Relaxed inertial proximal Peaceman-Rachford splitting method for separable convex programming
    He, Yongguang
    Li, Huiyun
    Liu, Xinwei
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) : 555 - 578