STABILITY ANALYSIS OF THE PEACEMAN-RACHFORD METHOD FOR PARABOLIC EQUATIONS WITH NONLOCAL CONDITIONS
被引:0
|
作者:
Sapagovas, Mifodijus
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, LithuaniaVilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, Lithuania
Sapagovas, Mifodijus
[1
]
Novickij, Jurij
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, LithuaniaVilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, Lithuania
Novickij, Jurij
[1
]
Ciupaila, Regimantas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-10223 Vilnius, LithuaniaVilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, Lithuania
Ciupaila, Regimantas
[2
]
机构:
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akademijos Str 4, LT-04812 Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, Sauletekio Ave 11, LT-10223 Vilnius, Lithuania
Nonlocal boundary conditions;
parabolic equations;
alternating direction method;
stability of finite difference scheme;
ALTERNATING DIRECTION METHOD;
POISSON EQUATION;
CONVERGENCE;
2ND-ORDER;
SUBJECT;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider an efficient finite difference method solving of two-dimensional parabolic equations with nonlocal conditions. The specific feature of the investigated problem is that the nonlocal condition contains the values of solution's derivatives at different points. We prove the stability of this method in specific energy norm. The main stability condition is that all eigenvalues of the corresponding difference problem are positive. Results of computational experiments are presented.