Classification of rice seed variety using point cloud data combined with deep learning

被引:12
|
作者
Qian, Yan [1 ]
Xu, Qianjin [1 ]
Yang, Yingying [1 ]
Lu, Hu [1 ]
Li, Hua [2 ]
Feng, Xuebin [2 ]
Yin, Wenqing [2 ]
机构
[1] Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210031, Peoples R China
[2] Nanjing Agr Univ, Coll Engn, Nanjing 210031, Peoples R China
基金
中国国家自然科学基金;
关键词
rice seed; variety classification; point cloud data; deep learning; light field camera; NEURAL-NETWORK;
D O I
10.25165/j.ijabe.20211405.5902
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Rice variety selection and quality inspection are key links in rice planting. Compared with two-dimensional images, three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more comprehensively and accurately. This study proposed a rice variety classification method using three-dimensional point cloud data of the surface of rice seeds combined with a deep learning network to achieve the rapid and accurate identification of rice varieties. First, a point cloud collection platform was set up with a Raytrix light field camera as the core to collect three-dimensional point cloud data on the surface of rice seeds; then, the collected point cloud was filled, filtered and smoothed; after that, the point cloud segmentation is based on the RANSAC algorithm, and the point cloud downsampling is based on a combination of random sampling algorithm and voxel grid filtering algorithm. Finally, the processed point cloud was input to the improved PointNet network for feature extraction and species classification. The improved PointNet network added a cross-level feature connection structure, made full use of features at different levels, and better extracted the surface structure features of rice seeds. After testing, the improved PointNet model had an average classification accuracy of 89.4% for eight varieties of rice, which was 1.2% higher than that of the PointNet model. The method proposed in this study combined deep learning and point cloud data to achieve the efficient classification of rice varieties.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [31] Precision in Rice Variety Classification using Stacking-based Ensemble Learning
    Islam, Md. Masudul
    Himel, Galib Muhammad Shahriar
    Moazzam, Golam
    Uddin, Mohammad Shorif
    JOURNAL OF CEREAL SCIENCE, 2025, 122
  • [32] Data Classification with Deep Learning using Tensorflow
    Ertam, Fatih
    Aydin, Galip
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 755 - 758
  • [33] Symmetry detection of occluded point cloud using deep learning
    Wu, Zhelun
    Jiang, Hongyan
    He, Siyun
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY, 2021, 183 : 32 - 39
  • [34] Classification of Typical Tree Species in Laser Point Cloud Based on Deep Learning
    Chen, Jianchang
    Chen, Yiming
    Liu, Zhengjun
    REMOTE SENSING, 2021, 13 (23)
  • [35] Deep Learning Model for Point Cloud Classification Based on Graph Convolutional Network
    Wang Xujiao
    Ma Jie
    Wang Nannan
    Ma Pengfei
    Yang Lichaung
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [36] Deep Learning Point Cloud Classification Method Based on Fusion Graph Convolution
    Xu Tianye
    Ding Haiyong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
  • [37] Corrupted Point Cloud Classification Through Deep Learning with Local Feature Descriptor
    Wu, Xian
    Guo, Xueyi
    Peng, Hang
    Su, Bin
    Ahamod, Sabbir
    Han, Fenglin
    SENSORS, 2024, 24 (23)
  • [38] Point Cloud Geometry Coding on Deep Learning-based Classification Performance
    Seleem, Abdelrahman
    Guarda, Andre F. R.
    Rodrigues, Nuno M. M.
    Pereira, Fernando
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 74 - 81
  • [39] Deep Learning-Based Point Cloud Classification of Obstacles for Intelligent Vehicles
    Xu, Yiqi
    Wu, Dengke
    Zhou, Mengfei
    Yang, Jiafu
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (02):
  • [40] Imbalanced Learning of Fault Data Combined with Cloud Model and Ensemble Classification
    Ma S.
    Zhao R.
    Wu Y.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (06): : 1114 - 1120and1243