Classification of rice seed variety using point cloud data combined with deep learning

被引:12
|
作者
Qian, Yan [1 ]
Xu, Qianjin [1 ]
Yang, Yingying [1 ]
Lu, Hu [1 ]
Li, Hua [2 ]
Feng, Xuebin [2 ]
Yin, Wenqing [2 ]
机构
[1] Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210031, Peoples R China
[2] Nanjing Agr Univ, Coll Engn, Nanjing 210031, Peoples R China
基金
中国国家自然科学基金;
关键词
rice seed; variety classification; point cloud data; deep learning; light field camera; NEURAL-NETWORK;
D O I
10.25165/j.ijabe.20211405.5902
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Rice variety selection and quality inspection are key links in rice planting. Compared with two-dimensional images, three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more comprehensively and accurately. This study proposed a rice variety classification method using three-dimensional point cloud data of the surface of rice seeds combined with a deep learning network to achieve the rapid and accurate identification of rice varieties. First, a point cloud collection platform was set up with a Raytrix light field camera as the core to collect three-dimensional point cloud data on the surface of rice seeds; then, the collected point cloud was filled, filtered and smoothed; after that, the point cloud segmentation is based on the RANSAC algorithm, and the point cloud downsampling is based on a combination of random sampling algorithm and voxel grid filtering algorithm. Finally, the processed point cloud was input to the improved PointNet network for feature extraction and species classification. The improved PointNet network added a cross-level feature connection structure, made full use of features at different levels, and better extracted the surface structure features of rice seeds. After testing, the improved PointNet model had an average classification accuracy of 89.4% for eight varieties of rice, which was 1.2% higher than that of the PointNet model. The method proposed in this study combined deep learning and point cloud data to achieve the efficient classification of rice varieties.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [21] Automated rebar diameter classification using point cloud data based machine learning
    Kim, Min-Koo
    Thedja, Julian Pratama Putra
    Chi, Hung-Lin
    Lee, Dong-Eun
    AUTOMATION IN CONSTRUCTION, 2021, 122
  • [22] Nature terrain classification using point cloud data
    Yuan, Xia
    Zhao, Chun-Xia
    Zhang, Hao-Feng
    Cai, Yun-Fei
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2010, 34 (02): : 222 - 226
  • [23] Tree Species Classification of Backpack Laser Scanning Data Using the PointNet plus plus Point Cloud Deep Learning Method
    Liu, Bingjie
    Chen, Shuxin
    Huang, Huaguo
    Tian, Xin
    REMOTE SENSING, 2022, 14 (15)
  • [24] DEEP LEARNING-BASED COMPRESSED DOMAIN POINT CLOUD CLASSIFICATION
    Seleem, Abdelrahman
    Guarda, Andre F. R.
    Rodrigues, Nuno M. M.
    Pereira, Fernando
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2620 - 2624
  • [25] BubblEX: An Explainable Deep Learning Framework for Point-Cloud Classification
    Matrone, Francesca
    Paolanti, Marina
    Felicetti, Andrea
    Martini, Massimo
    Pierdicca, Roberto
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6571 - 6587
  • [26] Advancements in point cloud data augmentation for deep learning: A survey
    Zhu, Qinfeng
    Fan, Lei
    Weng, Ningxin
    PATTERN RECOGNITION, 2024, 153
  • [27] TRANSFER LEARNING USING MOBILENET FOR RICE SEED IMAGE CLASSIFICATION
    Agustiono, Wahyudi
    Safitri, Firda Ayu
    Setiawan, Wahyudi
    Chan, Caroline
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023, : 1 - 14
  • [28] Diversified Point Cloud Classification Using Personalized Federated Learning
    Xue, Anshun
    Zhu, Xinghua
    Wang, Jianzong
    Xiao, Jing
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [29] Paper: Research on Identification of Road Features from Point Cloud Data Using Deep Learning
    Umehara, Yoshimasa
    Tsukada, Yoshinori
    Nakamura, Kenji
    Tanaka, Shigenori
    Nakahata, Koki
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2021, 15 (03) : 274 - 289
  • [30] A Supervised Learning approach on Rice Variety Classification using Convolutional Neural Networks
    Castillo, Louie John L.
    Galindo, Juvy Amor M.
    Rosal, Jamie Eduardo C.
    PROCEEDINGS OF 2019 6TH INTERNATIONAL CONFERENCE BIOINFORMATICS RESEARCH AND APPLICATIONS (ICBRA 2019), 2019, : 18 - 23