The dimension formula for the Lorenz attractor

被引:20
|
作者
Leonov, G. A. [2 ]
Pogromsky, A. Yu. [1 ]
Starkov, K. E. [3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
[3] CITEDI IPN, Tijuana 22510, BC, Mexico
关键词
Lorenz system; Lyapunov dimension;
D O I
10.1016/j.physleta.2011.01.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical formula for the Lyapunov dimension of the Lorenz attractor is presented under assumption that all the equilibria are unstable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1179 / 1182
页数:4
相关论文
共 50 条
  • [1] Lyapunov dimension formula for the global attractor of the Lorenz system
    Leonov, G. A.
    Kuznetsov, N. V.
    Korzhemanova, N. A.
    Kusakin, D. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 41 : 84 - 103
  • [2] The dimension formula for the Lorenz attractor (vol 375, pg 1179, 2011)
    Leonov, G. A.
    Pogromsky, A. Yu
    Starkov, K. E.
    PHYSICS LETTERS A, 2012, 376 (45) : 3472 - 3474
  • [3] On the shape and dimension of the Lorenz attractor
    Doering, CR
    Gibbon, JD
    DYNAMICS AND STABILITY OF SYSTEMS, 1995, 10 (03): : 255 - 268
  • [4] THE FRACTAL DIMENSION OF THE LORENZ ATTRACTOR
    MCGUINNESS, MJ
    PHYSICS LETTERS A, 1983, 99 (01) : 5 - 9
  • [5] Lyapunov dimension formula for the attractor of the Glukhovsky–Dolzhansky system
    G. A. Leonov
    T. N. Mokaev
    Doklady Mathematics, 2016, 93 : 42 - 45
  • [6] CORRELATIONAL DIMENSION VARIABILITY CAUSED BY INHOMOGENEITY OF A FRACTAL (ON THE EXAMPLE OF THE LORENZ ATTRACTOR)
    SIDORIN, IA
    SMIRNOV, VB
    FIZIKA ZEMLI, 1995, (07): : 89 - 96
  • [7] On the shape and dimension of the Lorenz attractor (vol 10, pg 255, 1995)
    Doering, CR
    Gibbon, JD
    DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03): : 299 - 301
  • [8] Lower bounds for the Hausdorff dimension of the Geometric Lorenz attractor: The homoclinic case
    Lizana, Cristina
    Mora, Leonardo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03) : 699 - 709
  • [9] Lyapunov Dimension Formula for the Attractor of the Glukhovsky-Dolzhansky System
    Leonov, G. A.
    Mokaev, T. N.
    DOKLADY MATHEMATICS, 2016, 93 (01) : 42 - 45
  • [10] THE NONEQUIVALENCE AND DIMENSION FORMULA FOR ATTRACTORS OF LORENZ-TYPE SYSTEMS
    Chen, Yuming
    Yang, Qigui
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (12):