Quantum speed limit via the trajectory ensemble

被引:29
|
作者
Hu, Xianghong [1 ]
Sun, Shuning [1 ]
Zheng, Yujun [1 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.101.042107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present the theoretical framework of quantum speed limits (QSLs) in terms of trajectory ensembles in phase space. This indicates that the QSL can be thought of as the summation of the connecting harmonic oscillators: the connections between the points of the system in phase space and the trajectory ensemble. Two typical models, the time-dependent harmonic oscillator and the undriven harmonic oscillator coupled to a thermal bath, are investigated by employing the theoretical framework. Our results from this perspective are in agreement with previous treatments.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum speed limit time for correlated quantum channel
    Awasthi, N.
    Haseli, S.
    Johri, U. C.
    Salimi, S.
    Dolatkhah, H.
    Khorashad, A. S.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [32] Quantum speed limit time for correlated quantum channel
    N. Awasthi
    S. Haseli
    U. C. Johri
    S. Salimi
    H. Dolatkhah
    A. S. Khorashad
    Quantum Information Processing, 2020, 19
  • [33] Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit
    Lucarelli, Dennis
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [34] Quantum speed limit and stability of coherent states in quantum gravity
    Liegener, Klaus
    Rudnicki, Lukasz
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (12)
  • [35] Comparing planar quantum computing platforms at the quantum speed limit
    Basilewitsch, Daniel
    Dlaska, Clemens
    Lechner, Wolfgang
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [36] Quantum coherence sets the quantum speed limit for mixed states
    Mondal, Debasis
    Datta, Chandan
    Sazim, Sk
    PHYSICS LETTERS A, 2016, 380 (5-6) : 689 - 695
  • [37] Quantum-speed-limit bounds in an open quantum evolution
    Mirkin, Nicolas
    Toscano, Fabricio
    Wisniacki, Diego A.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [38] Limit on the speed of quantum computation in determining parity
    Farhi, E
    Goldstone, J
    Gutmann, S
    Sipser, M
    PHYSICAL REVIEW LETTERS, 1998, 81 (24) : 5442 - 5444
  • [39] Testing the unified bounds of the quantum speed limit
    Wu, Yaozu
    Yuan, Jiale
    Zhang, Chuanyu
    Zhu, Zitian
    Deng, Jinfeng
    Zhang, Xu
    Zhang, Pengfei
    Guo, Qiujiang
    Wang, Zhen
    Huang, Jiehui
    Song, Chao
    Li, Hekang
    Wang, Da-Wei
    Wang, H.
    Agarwal, Girish S.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [40] Quantum speed limit time in a magnetic resonance
    Ivanchenko, E. A.
    PHYSICS LETTERS A, 2017, 381 (46) : 3880 - 3883