Quantum speed limit via the trajectory ensemble

被引:29
|
作者
Hu, Xianghong [1 ]
Sun, Shuning [1 ]
Zheng, Yujun [1 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.101.042107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present the theoretical framework of quantum speed limits (QSLs) in terms of trajectory ensembles in phase space. This indicates that the QSL can be thought of as the summation of the connecting harmonic oscillators: the connections between the points of the system in phase space and the trajectory ensemble. Two typical models, the time-dependent harmonic oscillator and the undriven harmonic oscillator coupled to a thermal bath, are investigated by employing the theoretical framework. Our results from this perspective are in agreement with previous treatments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Quantum speed limit for complex dynamics
    Mao Zhang
    Huai-Ming Yu
    Jing Liu
    npj Quantum Information, 9
  • [22] Quantum limit on computational time and speed
    Pati, AK
    Jain, SR
    Mitra, A
    Ramanna, R
    PHYSICS LETTERS A, 2002, 301 (3-4) : 125 - 129
  • [23] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [24] Effect of measurements on quantum speed limit
    Srivastav, Abhay
    Pandey, Vivek
    Pati, Arun k.
    EPL, 2024, 146 (06)
  • [25] Operational definition of a quantum speed limit
    Shao, Yanyan
    Liu, Bo
    Zhang, Mao
    Yuan, Haidong
    Liu, Jing
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [26] Geometric derivation of the quantum speed limit
    Jones, Philip J.
    Kok, Pieter
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [27] Quantum speed limit for complex dynamics
    Zhang, Mao
    Yu, Huai-Ming
    Liu, Jing
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [28] Quantum Speed Limit for Physical Processes
    Taddei, M. M.
    Escher, B. M.
    Davidovich, L.
    de Matos Filho, R. L.
    PHYSICAL REVIEW LETTERS, 2013, 110 (05)
  • [29] Quantum speed limit for thermal states
    Il'in, Nikolai
    Lychkovskiy, Oleg
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [30] Stronger Quantum Speed Limit for Mixed Quantum States
    Bagchi, Shrobona
    Thakuria, Dimpi
    Pati, Arun Kumar
    ENTROPY, 2023, 25 (07)