Equivalence of optimal L1-inequalities on Riemannian manifolds

被引:1
|
作者
Ceccon, Jurandir [1 ]
Cioletti, Leandro [2 ]
机构
[1] Univ Fed Parana, Dept Matemat, BR-81531990 Curitiba, PR, Brazil
[2] Univ Brasilia, Dept Matemat, UnB, BR-70910900 Brasilia, DF, Brazil
关键词
Sharp Sobolev inequalities; Best constant; Extremal maps; INEQUALITIES;
D O I
10.1016/j.jmaa.2014.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a smooth compact Riemannian manifold of dimension n >= 2. This paper concerns the validity of the optimal Riemannian L-1-Entropy inequality Entdv(g) (u) <= n log(A(opt)parallel to Du parallel to Bv(M) + B-opt) for all u is an element of BV(M) with parallel to u parallel to L-1(M) = 1 and existence of extremal functions. In particular, we prove that this optimal inequality is equivalent to an optimal L-1-Sobolev inequality obtained by Druet [3]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条