Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds

被引:0
|
作者
Faget, Zoe
机构
关键词
best constants; optimal Sobolev inequalities; exceptional case; concentration phenomenon;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ( M, g) be a Riemannian compact n-manifold. We know that for any epsilon > 0, there exists C-epsilon > 0 such that for any u epsilon H-1(n) (M), integral(M)e(u)dv (g) <= C-epsilon exp[(mu(n)+ epsilon) integral(M) vertical bar del u vertical bar(n)dv(g) + 1/vol (M) integral(M) udv (g)], mu(n) being the smallest constant possible such that the inequality remains true for any u epsilon H-1(n) (M). We call mu(n) the "first best constant". We prove in this paper that it is possible to choose epsilon = 0 and keep C-epsilon a finite constant. In other words we prove the existence of a "second best constant" in the exceptional case of Sobolev inequalities on compact Riemannian manifolds.
引用
收藏
页码:2303 / 2325
页数:23
相关论文
共 50 条