Minimisation of P surface segregation during epitaxial silicon growth for the fabrication of a silicon-based quantum computer

被引:0
|
作者
Oberbeck, L [1 ]
Curson, NJ [1 ]
Hallam, T [1 ]
Simmons, MY [1 ]
Goh, KEJ [1 ]
Schofield, SR [1 ]
Ruess, FJ [1 ]
Clark, RG [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
来源
关键词
D O I
10.1109/COMMAD.2002.1237241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To optimise the fabrication process for a silicon based quantum computer the surface segregation/diffusion of phosphorus atoms in silicon is investigated on an atomic scale using scanning tunnelling microscopy (STM) after epitaxial silicon growth at 255degreesC and room temperature, respectively. The phosphorus atom in the Si(001) surface forms a silicon-phosphorus heterodimer identified as a bright zigzag feature in filled state STM images. Sample annealing, used to reduce the surface roughness and the defect density after silicon growth is shown to increase the density of phosphorus atoms at the surface. However, the density of phosphorus atoms can be limited to a few percent of the initial density if the phosphorus atoms are encapsulated in silicon at room temperature.
引用
收藏
页码:259 / 262
页数:4
相关论文
共 50 条
  • [41] Fabrication and Characterization of Nanopillars for Silicon-Based Thermoelectrics
    A. Stranz
    Ü. Sökmen
    H.-H. Wehmann
    A. Waag
    E. Peiner
    Journal of Electronic Materials, 2010, 39 : 2013 - 2016
  • [42] Silicon surface cleaning for low temperature silicon epitaxial growth
    Mayusumi, M
    Imai, M
    Nakahara, S
    Inoue, K
    Takahashi, J
    Ohmi, T
    SOLID STATE PHENOMENA, 1999, 65-6 : 229 - 232
  • [43] Silicon surface cleaning for low temperature silicon epitaxial growth
    Super Silicon Crystal Research Inst, Corp, Gumma, Japan
    Diffus Def Data Pt B, (229-232):
  • [44] Fabrication and Characterization of Nanopillars for Silicon-Based Thermoelectrics
    Stranz, A.
    Soekmen, Ue
    Wehmann, H. -H.
    Waag, A.
    Peiner, E.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) : 2013 - 2016
  • [45] Silicon-based MEMS fabrication techniques and standardization
    Hao, Yilong
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2007, 45 (04) : 317 - 320
  • [46] Fabrication of silicon-based nanoparticles for biological imaging
    Zhang, Xiaoming
    Neiner, Doinita
    Wang, Shizhong
    Louie, Angelique Y.
    Kauzlarich, Susan M.
    COLLOIDAL QUANTUM DOTS FOR BIOMEDICAL APPLICATIONS II, 2007, 6448
  • [47] Fabrication of functional silicon-based nanoporous membranes
    Ileri, Nazar
    Stroeve, Pieter
    Palazoglu, Ahmet
    Faller, Roland
    Zaidi, Saleem H.
    Nguyen, Hoang T.
    Britten, Jerald A.
    Letant, Sonia E.
    Tringe, Joseph W.
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2012, 11 (01):
  • [48] Fabrication of silicon-based field emitter arrays
    McGuire, GE
    Temple, D
    SURFACES, VACUUM, AND THEIR APPLICATIONS, 1996, (378): : 360 - 362
  • [49] AUTODOPING DURING SILICON EPITAXIAL GROWTH
    POGGE, HB
    BOSS, DW
    EBERT, E
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (03) : C108 - &
  • [50] Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection
    Fang, Ruilin
    Xia, Guang-Qiong
    Zheng, Yan-Fei
    Wang, Qing-Qing
    Wu, Zheng-Mao
    PHOTONICS, 2024, 11 (08)