Minimisation of P surface segregation during epitaxial silicon growth for the fabrication of a silicon-based quantum computer

被引:0
|
作者
Oberbeck, L [1 ]
Curson, NJ [1 ]
Hallam, T [1 ]
Simmons, MY [1 ]
Goh, KEJ [1 ]
Schofield, SR [1 ]
Ruess, FJ [1 ]
Clark, RG [1 ]
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
来源
关键词
D O I
10.1109/COMMAD.2002.1237241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To optimise the fabrication process for a silicon based quantum computer the surface segregation/diffusion of phosphorus atoms in silicon is investigated on an atomic scale using scanning tunnelling microscopy (STM) after epitaxial silicon growth at 255degreesC and room temperature, respectively. The phosphorus atom in the Si(001) surface forms a silicon-phosphorus heterodimer identified as a bright zigzag feature in filled state STM images. Sample annealing, used to reduce the surface roughness and the defect density after silicon growth is shown to increase the density of phosphorus atoms at the surface. However, the density of phosphorus atoms can be limited to a few percent of the initial density if the phosphorus atoms are encapsulated in silicon at room temperature.
引用
收藏
页码:259 / 262
页数:4
相关论文
共 50 条
  • [21] Silicon quantum integrated circuits -: an attempt to fabricate silicon-based quantum devices using CMOS fabrication techniques
    Paul, DJ
    Coonan, B
    Redmond, G
    O'Neill, BJ
    Crean, GM
    Holländer, B
    Mantl, S
    Zozoulenko, I
    Berggren, KF
    Lazzari, JL
    d'Avitaya, FA
    Derrien, J
    THIN SOLID FILMS, 1998, 336 (1-2) : 130 - 136
  • [22] Fabrication and application of silicon-based microchannels
    Gardeniers, JGE
    Tjerkstra, RW
    van den Berg, A
    MICROREACTION TECHNOLOGY: INDUSTRIAL PROSPECTS, 2000, : 36 - 44
  • [23] Silicon quantum integrated circuits -: an attempt to fabricate silicon-based quantum devices using CMOS fabrication techniques
    Paul, DJ
    Coonan, B
    Redmond, G
    O'Neill, BJ
    Crean, GM
    Holländer, B
    Mantl, S
    Zozoulenko, I
    Berggren, KF
    Lazzari, JL
    d'Avitaya, FA
    Derrien, J
    THIN FILMS EPITAXIAL GROWTH AND NANOSTRUCTURES, 1999, 79 : 130 - 136
  • [24] Fabrication of porous silicon-based biosensor
    Mathew, FP
    Alocilja, EC
    PROCEEDINGS OF THE IEEE SENSORS 2003, VOLS 1 AND 2, 2003, : 293 - 298
  • [25] Nanowire fabrication of silicon-based materials
    Kohno, Hideo
    Takeda, Seiji
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 1197 - 1199
  • [26] Silicon-based Devices for Computer Interconnects
    Wosinski, Lech
    Wang, Zhechao
    2010 IEEE 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (ANTS), 2010, : 7 - 9
  • [27] Segregation of interface carbon during silicon epitaxial growth by UHV-CVD
    Aoyama, T
    Suzuki, T
    Arai, K
    Tatsumi, T
    JOURNAL OF CRYSTAL GROWTH, 1995, 157 (1-4) : 323 - 326
  • [28] Surface segregation of phosphorus, antimony, and arsenic in silicon-based binary solid solutions
    Lyuev, VK
    Karmokov, AM
    Shebzukhov, AA
    COLLOID JOURNAL, 1996, 58 (04) : 478 - 483
  • [29] Zoo of silicon-based quantum bits
    Liu, Yang
    Luo, Junwei
    INNOVATION, 2022, 3 (06):
  • [30] Design of Silicon-Based Quantum Squeezer
    Al-Mahmoud, Mouhamad
    Clemmen, Stephane
    25TH EUROPEAN CONFERENCE ON INTEGRATED OPTICS, ECIO 2024, 2024, 402 : 381 - 388