RETHINKING TRAINING OBJECTIVE FOR SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION: SEMANTIC CUES TO RESCUE

被引:0
|
作者
Li, Keyao [1 ]
Li, Ge [1 ]
Li, Thomas [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Peking Univ, Adv Inst Informat Technol, Hangzhou, Peoples R China
关键词
self-supervised learning; monocular depth estimation; semantic cues;
D O I
10.1109/ICIP42928.2021.9506744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation finds a wide range of applications in modeling 3D scenes. Since it is expensive to collect ground truth labels to supervise training, plenty of works have been done in a self-supervised manner. A common practice is to train the network optimizing a photometric objective (i.e., view synthesis) due to its effectiveness. However, this training objective is sensitive to optical changes and lacks a consideration of object-level cues, which leads to sub-optimal results in some cases, e.g., artifacts in complex regions and depth discontinuities around thin structures. We summarize them as depth ambiguities. In this paper, we propose an easy yet effective architecture, introducing semantic cues into supervision to solve problems mentioned above. First through our study on the problems we figure out that they are due to the limitation of the commonly applied photometric reconstruction training objective. Then we come up with our method using semantic cues to encode the geometry constraint behind view synthesis. The proposed novel objective is more credible towards confusing pixels, also takes an object-level perception. Experiments show that without introducing extra inference complexity, our method alleviates depth ambiguities greatly and performs comparably with state-of-the-art methods on KITTI benchmark.
引用
收藏
页码:3308 / 3312
页数:5
相关论文
共 50 条
  • [41] Self-Supervised Human Depth Estimation from Monocular Videos
    Tan, Feitong
    Zhu, Hao
    Cui, Zhaopeng
    Zhu, Siyu
    Pollefeys, Marc
    Tan, Ping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 647 - 656
  • [42] Self-Supervised Monocular Depth Estimation with Multi-constraints
    Yang, Xinpeng
    Zhang, Sen
    Zhao, Baoyong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8422 - 8427
  • [43] Self-supervised Monocular Depth Estimation on Unseen Synthetic Cameras
    Diana-Albelda, Cecilia
    Bravo Perez-Villar, Juan Ignacio
    Montalvo, Javier
    Garcia-Martin, Alvaro
    Bescos Cano, Jesus
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 449 - 463
  • [44] Self-Supervised Deep Monocular Depth Estimation With Ambiguity Boosting
    Bello, Juan Luis Gonzalez
    Kim, Munchurl
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9131 - 9149
  • [45] MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer
    Zhao, Chaoqiang
    Zhang, Youmin
    Poggi, Matteo
    Tosi, Fabio
    Guo, Xianda
    Zhu, Zheng
    Huang, Guan
    Tang, Yang
    Mattoccia, Stefano
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 668 - 678
  • [46] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
    Peng, Rui
    Wang, Ronggang
    Lai, Yawen
    Tang, Luyang
    Cai, Yangang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15540 - 15549
  • [47] Constant Velocity Constraints for Self-Supervised Monocular Depth Estimation
    Zhou, Hang
    Greenwood, David
    Taylor, Sarah
    Gong, Han
    CVMP 2020: THE 17TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2020,
  • [48] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Sun, Lin
    Li, Yi
    Liu, Bingzheng
    Xu, Liying
    Zhang, Zhe
    Zhu, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42485 - 42495
  • [49] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Lin Sun
    Yi Li
    Bingzheng Liu
    Liying Xu
    Zhe Zhang
    Jie Zhu
    Multimedia Tools and Applications, 2022, 81 : 42485 - 42495
  • [50] Self-Supervised Monocular Depth Hints
    Watson, Jamie
    Firman, Michael
    Brostow, Gabriel J.
    Turmukhambetov, Daniyar
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2162 - 2171